Bohman extremal problem for the Dunkl transform
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 115-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a solution of the Bohman extremal problem for nonnegative functions with the support of the Dunkl transform in a Euclidean ball or parallelepiped. The proof uses the invariance of the problem under orthogonal transforms and quadrature formulas with zeros of Bessel functions.
Keywords: root system, reflection group, Dunkl weight, Dunkl transform, Bohman extremal problem
Mots-clés : Bessel quadrature formula.
@article{TIMM_2015_21_4_a11,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {Bohman extremal problem for the {Dunkl} transform},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {115--123},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a11/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - Bohman extremal problem for the Dunkl transform
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 115
EP  - 123
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a11/
LA  - ru
ID  - TIMM_2015_21_4_a11
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T Bohman extremal problem for the Dunkl transform
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 115-123
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a11/
%G ru
%F TIMM_2015_21_4_a11
D. V. Gorbachev; V. I. Ivanov. Bohman extremal problem for the Dunkl transform. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 115-123. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a11/

[1] Rosler M., “Dunk l operators: Theory and applications”, Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 | DOI | MR | Zbl

[2] Jeu M. de, “Paley-Wiener theorems for the Dunkl transform”, Trans. Amer. Math. Soc., 358:10 (2006), 4225–4250 | DOI | MR | Zbl

[3] Rosler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | DOI | MR | Zbl

[4] Bohman H., “Approximate Fourier analysis of distribution functions”, Ark. Mat., 4 (1960), 99–157 | DOI | MR

[5] Zhuk V.V., Approksimatsiya periodicheskikh funktsii, Izd-vo LGU, L., 1982, 368 pp. | MR

[6] Ehm W., Gneiting T., Richards D., “Convolution roots of radial positive definite functions with compact support”, Trans. Amer. Math. Soc., 356:11 (2004), 4655–4685 | DOI | MR | Zbl

[7] Yudin V.A., “Mnogomernaya teorema Dzheksona”, Mat. zametki, 20:3 (1976), 439–444 | MR | Zbl

[8] Ivanov V.I., “O priblizhenii funktsii vprostranstvakh $L_{p}$”, Mat. zametki, 56:2 (1994), 15–40 | Zbl

[9] Gorbachev D.V., Izbrannye zadachi teorii funktsii i teorii priblizhenii, Grif i K, Tula, 2005, 192 pp.

[10] Gorbachev D.V., “Ekstremalnaya zadacha Bomana dlya preobrazovaniya Fure - Gankelya”, Izv.TulGU. Estestv. nauki, 2014, no. 4, 5–10

[11] Xu Y., “Dunkl operators: Funk-Hecke formula for orthogonal polynomials on spheres and on balls”, Bull. London Math. Soc., 32:4 (2000), 447–457 | DOI | MR | Zbl

[12] Ivanov A.V., “Zadacha Logana dlya tselykh funktsii mnogikh peremennykh ikonstanty Dzheksona vvesovykh prostranstvakh”, Izv. TulGU. Estestv. nauki, 2011, no. 2, 29–58

[13] Frappier C., Oliver P., “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60:201 (1993), 303–316 | DOI | MR | Zbl

[14] Grosev G.R., Rahman Q.I., “A quadrature formulae with zeros of Bessel functions as nodes”, Math. Comp., 64:210 (1995), 715–725 | DOI | MR