On the divergence of trigonometric Fourier series in classes $\varphi(L)$ contained in $L$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 109-114
Cet article a éte moissonné depuis la source Math-Net.Ru
We show the unimprovability of a theorem on sufficient convergence conditions for the trigonometric Fourier series of a function in classes $\varphi(L)$ in the case when the class $\varphi(L)$ is “close” to $L$.
Keywords:
trigonometric Fourier series, classes $\varphi(l)$.
@article{TIMM_2015_21_4_a10,
author = {M. R. Gabdullin},
title = {On the divergence of trigonometric {Fourier} series in classes $\varphi(L)$ contained in $L$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {109--114},
year = {2015},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a10/}
}
TY - JOUR AU - M. R. Gabdullin TI - On the divergence of trigonometric Fourier series in classes $\varphi(L)$ contained in $L$ JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 109 EP - 114 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a10/ LA - ru ID - TIMM_2015_21_4_a10 ER -
M. R. Gabdullin. On the divergence of trigonometric Fourier series in classes $\varphi(L)$ contained in $L$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 109-114. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a10/
[1] Bari N.K., Trigonometricheskie ryady, GIFML, M., 1961, 937 pp. | MR
[2] Kolmogoroff A., “Sur les fonctions harmoniques conjuguees et les series de Fourier”, Fund. Math., 7 (1925), 24–29 | Zbl
[3] Zigmund A., Trigonometricheskie ryady, v. 1,2, Mir, M., 1965, 616,538 pp. | MR
[4] Ulyanov P.L., “Predstavlenie funktsii ryadami i klassy $\varphi (L)$”, Uspekhi mat. nauk, 27:2 (1972), 3–52 | MR | Zbl