Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 14-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the problem of optimal recovery of a function analytic in a doubly connected domain from its approximately given values on one of the two components of the boundary. An optimal recovery method is obtained in the case when the error is an integer power of the modulus of the domain.
Keywords: optimal recovery, analytic functions, doubly connected domain.
@article{TIMM_2015_21_4_a1,
     author = {R. R. Akopian},
     title = {Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {14--19},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a1/}
}
TY  - JOUR
AU  - R. R. Akopian
TI  - Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 14
EP  - 19
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a1/
LA  - ru
ID  - TIMM_2015_21_4_a1
ER  - 
%0 Journal Article
%A R. R. Akopian
%T Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 14-19
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a1/
%G ru
%F TIMM_2015_21_4_a1
R. R. Akopian. Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 14-19. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a1/

[1] Aizenberg L.A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990, 248 pp. | MR

[2] Akopyan R.R., “Nailuchshee priblizhenie operatora analiticheskogo prodolzheniya na klasse analiticheskikh v polose funktsii”, Tr. Instituta matematiki i mekhaniki UrO RAN, 17:3 (2011), 46–54 | MR

[3] Akopyan R.R., “Nailuchshee priblizhenie operatora analiticheskogo prodolzheniya na klasse analiticheskikh v koltse funktsii”, Tr. Instituta matematiki i mekhaniki UrO RAN, 18:4 (2012), 3–13

[4] Akopyan R.R., “Optimalnoe vosstanovlenie analiticheskoi funktsii po zadannym s pogreshnostyu granichnym znacheniyam”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 17-i mezhdunar. Sarat. zimnei shk., Nauchnaya kniga, Saratov, 2014, 17–19

[5] Akopyan R.R., “Optimalnyi metod prodolzheniya analiticheskoi funktsii s chasti granitsy oblasti”, Algoritmicheskii analiz neustoichivykh zadach, tez. dokl. Vseros. konf. s mezhdunar. uchastiem, posvyaschennoi pamyati V.K. Ivanova, Izdatelskii tsentr YuUrGU, Chelyabinsk, 2014, 22–24

[6] Arestov V.V., “O ravnomernoi regulyarizatsii zadachi vychisleniya znachenii operatora”, Mat. zametki, 22:2 (1977), 231–244 | MR | Zbl

[7] Arestov V.V., “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, Tr. MIAN, 189 (1989), 3–20, Nauka, M. | MR

[8] Arestov V.V., Gabushin V.N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Ser. matematicheskaya, 1995, no. 11, 42–68 | MR | Zbl

[9] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6 (312) (1996), 89–124 | DOI | MR | Zbl

[10] Gabushin V.N., “Nailuchshee priblizhenie funktsionalov na nekotorykh mnozhestvakh”, Mat. zametki, 8:5 (1970), 551–562

[11] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR

[12] Goluzin G.M., Krylov V.I., “Obobschennaya formula Carleman`a i prilozhenie ee k analiticheskomu prodolzheniyu funktsii”, Mat. sb., 40:2 (1933), 144–149

[13] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 286 pp. | MR

[14] Magaril-Ilyaev G.G., Osipenko K.Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Mat. zametki, 50:6 (1991), 85–93 | MR

[15] Micchelli Ch.A., Rivlin Th.J., “A survey of optimal recovery”, Optimal estimation in approximation theory, Proc. Internat. Sympos. (Freudenstadt, 1976), Plenum Press, N.Y., etc., 1977, 1–54 | MR

[16] Nevanlinna F., Nevanlinna R., “Uber die Eigenschaften einer analyticchen Funktionen in der Umgeburg einer singularen Stille oder Linie”, Acta Soc. Sci. Fenn., 50:5 (1922), 1–46 | MR

[17] Polia G., Segë G., Zadachi i teoremy iz analiza, v 2 t., v. 1, Nauka, M., 1978, 398 pp.

[18] Privalov I.I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.; L., 1950, 336 pp. | MR

[19] Osipenko K.Yu., Optimal recovery of analytic functions, NJVA Science Publ. Inc., Huntington, 2000, 229 pp.

[20] Robinson R.M., “Analytic functions in circular rings”, Duke Math. J., 10:2 (1943), 341–354 | DOI | MR | Zbl

[21] Taikov L.V., “Analiticheskoe prodolzhenie funktsii s oshibkoi”, Tr. MIAN, 109 (1971), 61–64 | MR | Zbl