Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 14-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of optimal recovery of a function analytic in a doubly connected domain from its approximately given values on one of the two components of the boundary. An optimal recovery method is obtained in the case when the error is an integer power of the modulus of the domain.
Keywords: optimal recovery, analytic functions, doubly connected domain.
@article{TIMM_2015_21_4_a1,
     author = {R. R. Akopian},
     title = {Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {14--19},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a1/}
}
TY  - JOUR
AU  - R. R. Akopian
TI  - Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 14
EP  - 19
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a1/
LA  - ru
ID  - TIMM_2015_21_4_a1
ER  - 
%0 Journal Article
%A R. R. Akopian
%T Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 14-19
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a1/
%G ru
%F TIMM_2015_21_4_a1
R. R. Akopian. Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 14-19. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a1/