@article{TIMM_2015_21_3_a9,
author = {E. Kh. Gimadi and I. A. Rykov},
title = {Asymptotically optimal approach to the approximate solution of several problems of covering a graph by nonadjacent cycles},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {89--99},
year = {2015},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a9/}
}
TY - JOUR AU - E. Kh. Gimadi AU - I. A. Rykov TI - Asymptotically optimal approach to the approximate solution of several problems of covering a graph by nonadjacent cycles JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 89 EP - 99 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a9/ LA - ru ID - TIMM_2015_21_3_a9 ER -
%0 Journal Article %A E. Kh. Gimadi %A I. A. Rykov %T Asymptotically optimal approach to the approximate solution of several problems of covering a graph by nonadjacent cycles %J Trudy Instituta matematiki i mehaniki %D 2015 %P 89-99 %V 21 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a9/ %G ru %F TIMM_2015_21_3_a9
E. Kh. Gimadi; I. A. Rykov. Asymptotically optimal approach to the approximate solution of several problems of covering a graph by nonadjacent cycles. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 89-99. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a9/
[1] Gimadi E.Kh., Glebov N.I., Perepelitsa V.A., “Algoritmy s otsenkami dlya zadach diskretnoi optimizatsii ”, Problemy kibernetiki, no. 31, Nauka, M., 1975, 35–42 | MR
[2] Gimadi E.Kh., “Novaya versiya asimptoticheski tochnogo algoritma resheniya evklidovoi zadachi kommivoyazhera ”, Metody optimizatsii i ikh prilozheniya, tr. XII Baikal. mezhdunar. konf., 1, Irkutsk, 2001, 117–124
[3] Serdyukov A.I., “Asimptoticheski tochnyi algoritm dlya zadachi kommivoyazhera na maksimum v evklidovom prostranstve”, Upravlyaemye cistemy, 1987, no. 27, 79–87, Novosibirsk | MR | Zbl
[4] Khachai M.Yu., Neznakhina E.D., “Polinomialnaya priblizhennaya skhema dlya evklidovoi zadachi o tsiklovom pokrytii grafa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 297–311 | MR
[5] Khachai M.Yu., Neznakhina E.D., “Approksimiruemost zadachi o minimalnom po vesu tsiklovom pokrytii grafa”, Dokl. RAN, 461:6 (2015), 644–649 | DOI | Zbl
[6] Frieze A.M., “On random symmetric travelling salesman problems”, Math. Oper. Res., 29:4 (2004), 878–890 | DOI | MR | Zbl
[7] Frieze A.M., “On the value of a random minimum spanning tree problem”, Discrete Appl. Math., 10:1 (1985), 47–56 | DOI | MR | Zbl
[8] Gabow H.N., “An efficient reduction technique for degree-restricted subgraph and bidirected network flow problems”, Proc. 15th Annual ACM Simposium on Theory of Computing, N.Y., 1983, 448–456