Classes of conjugate elements in finitary permutation groups
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 63-77
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the permutation properties of the conjugacy actions of a finitary permutation group on its classes of conjugate elements. These properties are used to show that classes of conjugate elements in finitary permutation groups are discrete subsets with respect to any Hausdorff group topology. Moreover, it is proved that the above property characterizes alternating groups in the class of countable locally finite simple groups.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finitary permutation groups, unconditionally discrete sets
Mots-clés : minimal group topologies.
                    
                  
                
                
                Mots-clés : minimal group topologies.
@article{TIMM_2015_21_3_a7,
     author = {V. V. Belyaev},
     title = {Classes of conjugate elements in finitary permutation groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a7/}
}
                      
                      
                    V. V. Belyaev. Classes of conjugate elements in finitary permutation groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 63-77. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a7/
