Classes of conjugate elements in finitary permutation groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 63-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the permutation properties of the conjugacy actions of a finitary permutation group on its classes of conjugate elements. These properties are used to show that classes of conjugate elements in finitary permutation groups are discrete subsets with respect to any Hausdorff group topology. Moreover, it is proved that the above property characterizes alternating groups in the class of countable locally finite simple groups.
Keywords: finitary permutation groups, unconditionally discrete sets
Mots-clés : minimal group topologies.
@article{TIMM_2015_21_3_a7,
     author = {V. V. Belyaev},
     title = {Classes of conjugate elements in finitary permutation groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {63--77},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a7/}
}
TY  - JOUR
AU  - V. V. Belyaev
TI  - Classes of conjugate elements in finitary permutation groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 63
EP  - 77
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a7/
LA  - ru
ID  - TIMM_2015_21_3_a7
ER  - 
%0 Journal Article
%A V. V. Belyaev
%T Classes of conjugate elements in finitary permutation groups
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 63-77
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a7/
%G ru
%F TIMM_2015_21_3_a7
V. V. Belyaev. Classes of conjugate elements in finitary permutation groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 63-77. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a7/

[1] Banakh T., Guran I., Protasov I., “Algebraically determined topologies on permutation groups”, Topology Appl., 159:9 (2012), 2258–2268 | DOI | MR | Zbl

[2] Cameron P., Permutation groups, London Math. Soc. Student Texts, no. 45, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl

[3] Dikranjan D., Megrelishvili M., “Minimality conditions in topological groups”, Recent Progress in General Topology III, eds. K. P. Hart, Jan Mill van, P. Simon, Springer Verlag, Berlin, 2013, 229–329 | MR

[4] Hall J.I., “Locally finite simple groups of finitary linear transformations”, Proc. NATO Advanced Study Institute on Finite and Locally Finite Groups, Istanbul, 1994, 147–188 | MR

[5] Hartley B., Zalesskii A.E., “Confined subgroups of simple locally finite groups and ideals of their group rings”, J. London Math. Soc., 55:2 (1997), 210–230 | DOI | MR | Zbl

[6] Zalesskii A.E., “Group rings of simple locally finite groups”, Proc. NATO Advanced Study Institute on Finite and Locally Finite Groups (Istanbul, 1994), 219–246 | MR

[7] Belyaev V.V., “Lokalno konechnye prostye gruppy, predstavimye v vide proizvedeniya dvukh inertnykh podgrupp”, Algebra i logika, 31:4 (1992), 360–368 | MR | Zbl

[8] Belyaev V.V., “Lokalnye kharakterizatsii beskonechnykh znakoperemennykh grupp i grupp lievskogo tipa”, Algebra i logika, 31:4 (1992), 369–390 | MR | Zbl

[9] Belyaev V.V., “Topologizatsiya schetnykh lokalno konechnykh grupp”, Algebra i logika, 34:6 (1995), 613–618 | MR | Zbl

[10] Belyaev V.V., “Pryamye summy finitarnykh grupp podstanovok”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:2 (2009), 45–49 | Zbl

[11] Belyaev V.V., “Spleteniya grupp finitarnykh podstanovok”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 38–43 | MR

[12] Belyaev V.V., “Gruppy finitarnykh podstanovok i topologiya potochechnoi skhodimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:3 (2012), 47–55

[13] Belyaev V.V., “Gruppy s finitarnymi klassami sopryazhennykh elementov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 45–61 | MR

[14] Markov A.A., “O bezuslovno zamknutykh mnozhestvakh”, Mat. sb., 18:1 (1946), 3–26