On automorphisms of a distance-regular graph with intersection array $\{39,36,1;1,2,39\}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 54-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Possible prime-order automorphisms and fixed-point subgraphs are found for a hypothetical distance-regular graph with intersection array $\{39,36,1;1,2,39\}$. It is shown that graphs with intersection arrays $\{15,12,1;1,2\}$, $\{35,32,1;1,2,35\}$, and $\{39,36,1;1,2,39\}$ are not vertex-symmetric.
Keywords: distance-regular graph
Mots-clés : graph automorphism.
@article{TIMM_2015_21_3_a6,
     author = {I. N. Belousov},
     title = {On automorphisms of a distance-regular graph with intersection array $\{39,36,1;1,2,39\}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {54--62},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a6/}
}
TY  - JOUR
AU  - I. N. Belousov
TI  - On automorphisms of a distance-regular graph with intersection array $\{39,36,1;1,2,39\}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 54
EP  - 62
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a6/
LA  - ru
ID  - TIMM_2015_21_3_a6
ER  - 
%0 Journal Article
%A I. N. Belousov
%T On automorphisms of a distance-regular graph with intersection array $\{39,36,1;1,2,39\}$
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 54-62
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a6/
%G ru
%F TIMM_2015_21_3_a6
I. N. Belousov. On automorphisms of a distance-regular graph with intersection array $\{39,36,1;1,2,39\}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 54-62. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a6/

[1] Burichenko V.P., Makhnev A.A., “O vpolne regulyarnykh lokalno tsiklicheskikh grafakh”, Sovremennye problemy matematiki, tez. 42-i Vseros. molod. konf., IMM UrO RAN, Ekaterinburg, 2011, 11–14

[2] Burichenko V.P., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{15,12,1;1,2,15\}$”, Dokl. AN, 445:4 (2012), 375–379 | MR | Zbl

[3] Makhnev A.A., Paduchikh D.V., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $ \{24,21,3;1,3,18\}$”, Dokl. AN, 441:1 (2011), 14–18 | MR | Zbl

[4] Tsiovkina L.Yu., “Avtomorfizmy grafa s massivom peresechenii $ \{35,32,1;1,2,35\}$”, Sib. elektron. mat. izv., 9 (2012), 285–293 | MR

[5] Cameron P.J., Permutation groups, London Math. Soc. Student Texts, no. 45, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl

[6] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 583–587 | MR | Zbl

[7] Godsil C.D., Liebler R.A., Praeger C.E., “Antipodal distance transitive covers of complete graphs”, Europ. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl

[8] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Siberian Electr. Math. Rep., 6 (2009), 1–12 | MR | Zbl

[9] J.H. Conway [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[10] The GAP Group, GAP — Groups, Algorithms, and Programming. Version 4.7.8. 2015. URL: http://www.gap-system.org