@article{TIMM_2015_21_3_a30,
author = {A. G. Chentsov and M. Yu. Khachai and M. Yu. Khachai},
title = {An exact algorithm with linear complexity for a problem of visiting megalopolises},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {309--317},
year = {2015},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a30/}
}
TY - JOUR AU - A. G. Chentsov AU - M. Yu. Khachai AU - M. Yu. Khachai TI - An exact algorithm with linear complexity for a problem of visiting megalopolises JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 309 EP - 317 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a30/ LA - ru ID - TIMM_2015_21_3_a30 ER -
%0 Journal Article %A A. G. Chentsov %A M. Yu. Khachai %A M. Yu. Khachai %T An exact algorithm with linear complexity for a problem of visiting megalopolises %J Trudy Instituta matematiki i mehaniki %D 2015 %P 309-317 %V 21 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a30/ %G ru %F TIMM_2015_21_3_a30
A. G. Chentsov; M. Yu. Khachai; M. Yu. Khachai. An exact algorithm with linear complexity for a problem of visiting megalopolises. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 309-317. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a30/
[1] V.V. Korobkin, A.N. Sesekin, O.L. Tashlykov, A.G. Chentsov, Metody marshrutizatsii i ikh prilozheniya v zadachakh povysheniya bezopasnosti i effektivnosti ekspluatatsii atomnykh stantsii, Novye tekhnologii, M., 2012, 234 pp.
[2] Chentsov A.G., “K voprosu o marshrutizatsii kompleksov rabot”, Vestn. Udmurt. un-ta, (Matematika, mekhanika, kompyuter. nauki), 2013, no. 1, 59–82 | Zbl
[3] Chentsov A.G., Chentsov A.A., Chentsov P.A., “Elementy dinamicheskogo programmirovaniya v ekstremalnykh zadachakh marshrutizatsii”, Problemy upravleniya, 2013, no. 5, 12–21
[4] Chentsov A.G., “Zadacha posledovatelnogo obkhoda megapolisov s usloviyami predshestvovaniya”, Avtomatika i telemekhanika, 2014, no. 4, 170–190 | MR | Zbl
[5] Karp R., “Reducibility among combinatorial problems”, Complexity of Computer Computations: Proc. Sympos., eds. eds. R.E. Miller, J.W. Thatcher, Plenum, New York, 1972, 85–103 | DOI | MR
[6] Garey M., Johnson D., Computers and intractability: a guide to the theory of $NP$-completeness, A Ser. of Books in the Mathematical Sciences, W.H. Freeman and Co, San Francisco, 1979, 339 pp. | MR | Zbl
[7] Christofides N., “Worst-case analysis of a new heuristic for the traveling salesman problem”, Proc. of a Symposium on new directions and recent results in algorithms and complexity, Academic Press, New York, 1976, 441
[8] Arora S., “Polynomial-time approximation schemes for Euclidean traveling salesman and other geometric problems”, J. ACM, 45:5 (1998), 753–782 | DOI | MR | Zbl
[9] Gimadi E.Kh., Perepelitsa V.A., “Asimptoticheski tochnyi podkhod k resheniyu zadachi kommivoyazhera”, Upravlyaemye sistemy: sb. nauch. tr., 12, In-t matematiki SO AN SSSR, Novosibirsk, 1974, 35–45 | Zbl
[10] Khachai M.Yu., Neznakhina E.D., “Approksimiruemost zadachi o minimalnom po vesu tsiklovom pokrytii grafa”, Dokl. RAN, 461:6 (2015), 644–649 | DOI | Zbl
[11] Khachai M.Yu., Neznakhina E.D., “PTAS dlya zadachi Min-k-SCCP v evklidovom prostranstve proizvolnoi fiksirovannoi razmernosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 297–311 | MR
[12] Bellman R., “Dynamis programming treatment of the traveling salesman problem”, J. Assoc. Comput. Mach., 9 (1962), 61–63 | DOI | MR | Zbl
[13] Held M., Karp R., “A dynamic programming approach to sequencing problems”, J. Soc. Indust. Appl. Math., 10:1 (1962), 196–210 | DOI | MR | Zbl
[14] Balas E., “New classes of efficiently solvable generalized traveling salesman problems”, Ann. Oper. Res., 86 (1999), 529–558 | DOI | MR | Zbl
[15] Balas E., Simonetti N., “Linear time dynamic-programming algorithms for new classes of restricted TSPs: a computational study”, INFORMS J. Comput., 13:1 (2001), 56–75 | DOI | MR | Zbl
[16] Introduction to algorithms, 3 ed., eds. eds. T. Cormen [et al.], MIT Press, Boston, 2009, 1312 pp. | MR | Zbl
[17] Melamed I.I., Sergeev S.I., Sigal I.Kh., “Zadacha kommivoyazhera. Tochnye metody”, Avtomatika i telemekhanika, 1989, no. 10, 3–29 | MR | Zbl
[18] The traveling salesman problem: a guided tour of combinatorial optimization, eds. eds. E.L. Lawler [et al.], John Wiley Sons, New York, 1985, 476 pp. | MR | Zbl
[19] Steiner G., “On the complexity of dynamic programming for sequencing problems with precedence constraints”, Ann. Oper. Res., 26:1-4 (1990), 103–123 | DOI | MR | Zbl
[20] A.M. Grigorev, E.E. Ivanko, S.T. Knyazev, A.G. Chentsov, “Dinamicheskoe programmirovanie v obobschennoi zadache kurera, oslozhnennoi vnutrennimi rabotami”, Mekhatronika, avtomatizatsiya, upravlenie, 2012, no. 7, 14–21