On the partition lattice of an integer
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 30-36
Voir la notice du chapitre de livre
The partition lattice of an integer introduced by T. Brylawski is studied. The aim is to give a detailed validation to a new practically convenient method of specifying an order relation and to algorithms for finding the intersection and the union of elements in this lattice. Our method of specifying an order relation and the union and intersection of elements in the partition lattice of a positive integer provides new opportunities for applying such lattices in the study of chromatic polynomials of complete multipartite graphs.
Mots-clés :
integer partition
Keywords: lattice, ferrer's diagram.
Keywords: lattice, ferrer's diagram.
@article{TIMM_2015_21_3_a3,
author = {V. A. Baranskii and T. A. Koroleva and T. A. Senchonok},
title = {On the partition lattice of an integer},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {30--36},
year = {2015},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a3/}
}
V. A. Baranskii; T. A. Koroleva; T. A. Senchonok. On the partition lattice of an integer. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 30-36. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a3/
[1] Baranskii V.A., Koroleva T.A., “Reshetka razbienii naturalnogo chisla”, Dokl. RAN., 418:4 (2008), 439–442 | MR
[2] Brylawski T., “The lattice of integer partitions”, Discrete Math., 6 (1973), 210–219 | MR
[3] Baranskii V.A., Senchonok T.A., “Khromaticheskaya opredelyaemost elementov vysoty $\leq3$ v reshetkakh polnykh mnogodolnykh grafov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 3–18 | MR
[4] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 456 pp. | MR