On the partition lattice of an integer
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 30-36

Voir la notice de l'article provenant de la source Math-Net.Ru

The partition lattice of an integer introduced by T. Brylawski is studied. The aim is to give a detailed validation to a new practically convenient method of specifying an order relation and to algorithms for finding the intersection and the union of elements in this lattice. Our method of specifying an order relation and the union and intersection of elements in the partition lattice of a positive integer provides new opportunities for applying such lattices in the study of chromatic polynomials of complete multipartite graphs.
Mots-clés : integer partition
Keywords: lattice, ferrer's diagram.
@article{TIMM_2015_21_3_a3,
     author = {V. A. Baranskii and T. A. Koroleva and T. A. Senchonok},
     title = {On the partition lattice of an integer},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--36},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a3/}
}
TY  - JOUR
AU  - V. A. Baranskii
AU  - T. A. Koroleva
AU  - T. A. Senchonok
TI  - On the partition lattice of an integer
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 30
EP  - 36
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a3/
LA  - ru
ID  - TIMM_2015_21_3_a3
ER  - 
%0 Journal Article
%A V. A. Baranskii
%A T. A. Koroleva
%A T. A. Senchonok
%T On the partition lattice of an integer
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 30-36
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a3/
%G ru
%F TIMM_2015_21_3_a3
V. A. Baranskii; T. A. Koroleva; T. A. Senchonok. On the partition lattice of an integer. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 30-36. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a3/