@article{TIMM_2015_21_3_a26,
author = {E. D. Neznakhina},
title = {A {PTAS} for the {Min-}$k${-SCCP} in a {Euclidean} space of arbitrary fixed dimension},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {268--278},
year = {2015},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a26/}
}
E. D. Neznakhina. A PTAS for the Min-$k$-SCCP in a Euclidean space of arbitrary fixed dimension. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 268-278. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a26/
[1] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR
[2] Karp R., “Reducibility among combinatorial problems”, Complexity of Computer Computations: Proc. Sympos., The IBM Research Symposia Series, eds. eds R.E. Miller and J.W. Thatcher, Plenum Press, New York, 1972, 85–103 | MR
[3] Sahni S., Gonzales T., “$P$-complete approximation problems”, J. Assoc. Comput. Mach., 23:3 (1976), 555–565 | DOI | MR | Zbl
[4] Papadimitriou C., “Euclidean TSP is $NP$-complete”, Theoret. Comput. Sci., 4:3 (1977), 237–244 | DOI | MR | Zbl
[5] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge; London, 1990, 1292 pp. | MR | Zbl
[6] Christofides N., “Worst-case analysis of a new heuristic for the traveling salesman problem”, Proc. of Symposium on New Directions and Recent Results in Algorithms and Complexity, Academic Press, New York, 1976, 441
[7] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, “Proof verification and interactability of approximation problems”, Proc. of the 33rd Annual IEEE Symposium on Foundations of Computer Science, 1992, 13–22
[8] Mitchell J., “Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, $k$-MST, and related problems”, SIAM J. Comp., 28:4 (1999), 1298–1309 | DOI | MR | Zbl
[9] Gimadi E.Kh., Perepelitsa V.A., “Asimptoticheski tochnyi podkhod k resheniyu zadachi kommivoyazhera”, Upravlyaemye sistemy: sb. nauch. tr., 1974, no. 12, 35–45, In-t matematiki SO AN SSSR, Novosibirsk
[10] Arora S., “Polynomial-time approximation schemes for Euclidean traveling salesman and other geometric problems”, J. ACM, 45:5 (1998), 753–782 | DOI | MR | Zbl
[11] Khachai M.Yu., Neznakhina E.D., “Polinomialnaya priblizhennaya skhema dlya evklidovoi zadachi o tsiklovom pokrytii grafa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 297–311 | MR
[12] Khachai M.Yu., Neznakhina E.D., “Approksimiruemost zadachi o minimalnom po vesu tsiklovom pokrytii grafa”, Dokl. AN, 461:6 (2015), 644–649 | DOI | Zbl
[13] Khachay M., Neznakhina K., “Approximation of Euclidean $k$-size cycle cover problem”, Croat. Oper. Res. Rev., 5:2 (2014), 177–188 | DOI | MR
[14] Jung H., “Über die kleinste Kugel, die eine räumliche Figur einschliesst”, J. Reine Angew. Math., 123 (1901), 241–257 | MR | Zbl
[15] Sneath P., “Computers in taxonomy”, J. Gen. Microbiol., 17 (1957), 201–226 | DOI
[16] Gower J., Ross G., “Minimum spanning trees and single linkage cluster analysis”, Appl. Statist., 18 (1969), 54–64 | DOI | MR
[17] Endryus G., Teoriya razbienii, Nauka, M., 1982, 256 pp. | MR