On extensions of strongly regular graphs with eigenvalue 4
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 233-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

J. Koolen posed the problem of studying distance regular graphs in which neighborhoods of vertices are strongly regular graphs with the second eigenvalue ${}\le t$ for a given positive integer $t$. This problem was solved earlier for $t=3$. A program of studying distance regular graphs in which neighborhoods of vertices are strongly regular graphs with nonprincipal eigenvalue $r$, $3 r\le 4$, was started by the first author in his preceding paper. In this paper, a reduction to local exceptional graphs is performed. In the present work we find parameters of exceptional strongly regular graphs with nonprincipal eigenvalue 4. In addition, we prove that a distance regular graph in which neighborhoods of vertices are exceptional nonpseudogeometric strongly regular graphs with nonprincipal eigenvalue 4 has degree at most 729.
Keywords: graph spectrum, strongly regular graph, distance regular graph.
@article{TIMM_2015_21_3_a24,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {On extensions of strongly regular graphs with eigenvalue 4},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {233--255},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a24/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - On extensions of strongly regular graphs with eigenvalue 4
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 233
EP  - 255
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a24/
LA  - ru
ID  - TIMM_2015_21_3_a24
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T On extensions of strongly regular graphs with eigenvalue 4
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 233-255
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a24/
%G ru
%F TIMM_2015_21_3_a24
A. A. Makhnev; D. V. Paduchikh. On extensions of strongly regular graphs with eigenvalue 4. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 233-255. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a24/

[1] Makhnev A.A., “O silno regulyarnykh grafakh s sobstvennym znacheniem 3 i ikh rasshireniya”, Dokl. AN, 451:5 (2013), 501–504 | DOI | MR | Zbl

[2] Gutnova A.K., Makhnev A.A., “O lokalno psevdo-$GQ(4,t)$-grafakh”, Dokl. AN, 462:6 (2015), 637–641 | DOI | Zbl

[3] Makhnev A.A., Paduchikh D.V., “Distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin silno regulyarny so vtorym sobstvennym znacheniem, ne bolshim 3”, Dokl. AN, 464:4 (2015), 396–400 | DOI

[4] Makhnev A.A., “Silno regulyarnye grafy s neglavnym sobstvennym znacheniem 4 i ikh rasshireniya”, Izv. Gomel. gos. u-ta(Estestv. nauki), 2014, no. 3 (84), 84–85

[5] Brouwer A.E., Haemers W.H., “The Gewirtz graph: an exercise in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[6] Brouwer A.E., Haemers W.H., Spectra of graphs (course notes), [e-resource], URL: http://homepages.cwi.nl/~aeb/math/ipm/

[7] Koolen J.H., Park J., “Distance-regular graphs with $a_1$ or $c_2$ at least half the valency”, J. Comb. Theory. Ser. A, 119 (2012), 546–555 | DOI | MR | Zbl

[8] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl

[9] Neumaier A., “Strongly regular graphs with smallest eigenvalue $-m$”, Arch. Math, 33:1 (1979), 392–400 | DOI | MR

[10] Belousov I.N., Makhnev A.A., “O rasshireniyakh silno regulyarnykh grafov bez treugolnikov s sobstvennym znacheniem 4”, Mezhdunar. konf., posvyaschennaya 100-letiyu so dnya rozhdeniya D.A. Suprunenko, tez. dokl., Minsk, 2015