The structure of quasifields of small even orders
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 197-212

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of a finite quasifield: maximal subfields, the orders of nonzero elements of its multiplicative loop, and the conjecture that the multiplicative loop of any finite semifield is one-generated. We consider the structure of all semifields of order 16; the Knuth-Rua semifield of order 32, which disproves Wene's conjecture; and representatives of isotope classes of quasifields of orders 16 and 32.
Keywords: finite quasifield, maximal subfield, conjecture that the multiplicative loop of any finite semifield is one-generated.
Mots-clés : order of a nonzero element
@article{TIMM_2015_21_3_a21,
     author = {V. M. Levchuk and P. K. Shtukkert},
     title = {The structure of quasifields of small even orders},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {197--212},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a21/}
}
TY  - JOUR
AU  - V. M. Levchuk
AU  - P. K. Shtukkert
TI  - The structure of quasifields of small even orders
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 197
EP  - 212
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a21/
LA  - ru
ID  - TIMM_2015_21_3_a21
ER  - 
%0 Journal Article
%A V. M. Levchuk
%A P. K. Shtukkert
%T The structure of quasifields of small even orders
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 197-212
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a21/
%G ru
%F TIMM_2015_21_3_a21
V. M. Levchuk; P. K. Shtukkert. The structure of quasifields of small even orders. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 197-212. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a21/