The structure of quasifields of small even orders
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 197-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the structure of a finite quasifield: maximal subfields, the orders of nonzero elements of its multiplicative loop, and the conjecture that the multiplicative loop of any finite semifield is one-generated. We consider the structure of all semifields of order 16; the Knuth-Rua semifield of order 32, which disproves Wene's conjecture; and representatives of isotope classes of quasifields of orders 16 and 32.
Keywords: finite quasifield, maximal subfield, conjecture that the multiplicative loop of any finite semifield is one-generated.
Mots-clés : order of a nonzero element
@article{TIMM_2015_21_3_a21,
     author = {V. M. Levchuk and P. K. Shtukkert},
     title = {The structure of quasifields of small even orders},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {197--212},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a21/}
}
TY  - JOUR
AU  - V. M. Levchuk
AU  - P. K. Shtukkert
TI  - The structure of quasifields of small even orders
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 197
EP  - 212
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a21/
LA  - ru
ID  - TIMM_2015_21_3_a21
ER  - 
%0 Journal Article
%A V. M. Levchuk
%A P. K. Shtukkert
%T The structure of quasifields of small even orders
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 197-212
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a21/
%G ru
%F TIMM_2015_21_3_a21
V. M. Levchuk; P. K. Shtukkert. The structure of quasifields of small even orders. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 197-212. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a21/

[1] Kurosh A.G., Lektsii po obschei algebre, Lan, SPb, 2007, 560 pp.

[2] Veblen O., Maclagan-Wedderburn J.H., “Non-desarguesian and non-pascalian geometries”, Trans. Amer. Math. Soc., 8:3 (1907), 379–388 | DOI | MR | Zbl

[3] Dickson L.E., “Linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc., 7:3 (1906), 370–390 | DOI | MR | Zbl

[4] Johnson N.L., Jha V., Biliotti M., Handbook of finite translation planes, London; New York, 2007, 861 pp. | MR

[5] Kholl M., Teoriya grupp, IL, M., 1962, 460 pp.

[6] Liebeck M., “The classification of finite simple Moufang loops”, Math. Proc. Camb. Phil. Soc., 102 (1987), 33–47 | DOI | MR | Zbl

[7] Grishkov A.N., Zavarnitsine A.V., “Lagrange's theorem for Moufang loops”, Math. Proc. Camb. Phil. Soc., 139 (2005), 101–116 | DOI | MR

[8] Grishkov A.N., Zavarnitsine A.V., “Sylow's theorems for Moufang loops”, J. Algebra, 321:7 (2009), 1813–1825 | DOI | MR | Zbl

[9] Gagola S. M. III, “Hall's theorem for Moufang loops”, J. Algebra, 323:12 (2010), 3252–3262 | DOI | MR | Zbl

[10] Wene G.P., “On the multiplicative structure of finite division rings”, Aequationes Math., 41:1 (1991), 222–233 | DOI | MR | Zbl

[11] Knuth D.E., Finite semifields and projective planes, PhD dissertation, California Inst. Technology, Pasadena, 1963, 70 pp. | MR

[12] Knuth D.E., “Finite semifields and projective planes”, J. Algebra, 2 (1965), 182–217 | DOI | MR | Zbl

[13] Rua I.F., “Primitive and non-primitive finite semifields”, Commun. Algebra, 32:2 (2004), 793–803 | DOI | MR | Zbl

[14] Levchuk V.M., Panov S.V., Shtukkert P.K., “The structure of finite quasifields and their projective translation planes”, Proc. XII Intern. Conf. on Algebra and Number Theory, Tula, 2014, 106–108

[15] Levchuk V.M., Shtukkert P.K., “Problems on structure for quasifields of orders 16 and 32”, J. Sib. Fed. Univ. Ser. Math. Phys., 7:3 (2014), 362–372

[16] Shtukkert P.K., “Kvazipolya i proektivnye ploskosti translyatsii malykh chetnykh poryadkov”, Izv. Irkut. gos. un-ta, 7:1 (2014), 144–159

[17] Hughes D.R., Piper F.C., Projective planes, Springer-Verlag, New-York, 1973, 291 pp. | MR | Zbl

[18] Lüneburg H., Translation planes, Springer-Verlag, New-York, 1980, 278 pp. | MR | Zbl

[19] Andre J., “Uber nicht-Desarguesche Ebenen mit transitiver Translationgruppe”, Math. Z., 60 (1954), 156–186 | DOI | MR | Zbl

[20] Kallaher M., Affine planes with transitive collineation groups, North-Holland, New York, 1982, 155 pp. | MR | Zbl

[21] Albert A.A., “Finite division algebras and finite planes”, Proc. Sympos. Appl. Math., 10, Amer. Math. Soc., Providence, 1960, 53–70 | DOI | MR

[22] Wesson J.R., “On Veblen-Wedderburn systems”, Amer. Math. Monthly, 64:9 (1957), 631–635 | DOI | MR | Zbl

[23] Walker R.J., “Determination of division algebras with 32 elements”, Proc. Symp. Appl. Math., 15 (1962), 83–85 | DOI | MR

[24] Kleinfeld E., “Techniques for enumerating Veblen-Wedderburn systems”, J. Assoc. Comput. Mach., 7 (1960), 330–337 | DOI | MR | Zbl

[25] Dempwolff U., Reifart A., “The Classification of the translation planes of order 16, Part I”, Geom. Dedic., 15 (1983), 137–153 | DOI | MR | Zbl

[26] Dempwolff U., Translation Planes of Small Order [e-resource] URL: http:www.mathematik.uni-kl.de/~dempw/dempw_Plane.html

[27] Shtukkert P.K., Kvazipolya i proektivnye ploskosti translyatsii malykh chetnykh poryadkov: diss. \ldots kand. fiz.-mat. nauk, Sib. feder. un-t, Krasnoyarsk, 2014, 83 pp.

[28] Rockenfeller R., Translationsebenen der Ordnung 32, Diploma Thesis, FB Mathematik. University of Kaiserslautern, 2011, 93 pp.