The structure of quasifields of small even orders
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 197-212
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the structure of a finite quasifield: maximal subfields, the orders of nonzero elements of its multiplicative loop, and the conjecture that the multiplicative loop of any finite semifield is one-generated. We consider the structure of all semifields of order 16; the Knuth-Rua semifield of order 32, which disproves Wene's conjecture; and representatives of isotope classes of quasifields of orders 16 and 32.
Keywords:
finite quasifield, maximal subfield, conjecture that the multiplicative loop of any finite semifield is one-generated.
Mots-clés : order of a nonzero element
Mots-clés : order of a nonzero element
@article{TIMM_2015_21_3_a21,
author = {V. M. Levchuk and P. K. Shtukkert},
title = {The structure of quasifields of small even orders},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {197--212},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a21/}
}
V. M. Levchuk; P. K. Shtukkert. The structure of quasifields of small even orders. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 197-212. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a21/