On chief factors of parabolic maximal subgroups of the group ${}^3D_4(q^3)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 187-191

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite simple group of twisted Lie type ${}^3D_4$, the description of chief factors of a parabolic maximal subgroup that lie in its unipotent radical is refined. We prove a theorem, in which, for every parabolic maximal subgroup of the group ${}^3D_4(q^3)$, fragments of chief series that lie in the unipotent radical of this parabolic subgroup are given. Generating elements and orders of the corresponding chief factors are presented in a table.
Keywords: finite group of lie type, parabolic subgroup, chief factor, unipotent subgroup.
@article{TIMM_2015_21_3_a19,
     author = {V. V. Korableva},
     title = {On chief factors of parabolic maximal subgroups of the group ${}^3D_4(q^3)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {187--191},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a19/}
}
TY  - JOUR
AU  - V. V. Korableva
TI  - On chief factors of parabolic maximal subgroups of the group ${}^3D_4(q^3)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 187
EP  - 191
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a19/
LA  - ru
ID  - TIMM_2015_21_3_a19
ER  - 
%0 Journal Article
%A V. V. Korableva
%T On chief factors of parabolic maximal subgroups of the group ${}^3D_4(q^3)$
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 187-191
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a19/
%G ru
%F TIMM_2015_21_3_a19
V. V. Korableva. On chief factors of parabolic maximal subgroups of the group ${}^3D_4(q^3)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 187-191. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a19/