On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 175-186

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $G$ is a primitive permutation group on a finite set $X$, $x\in X$, $y\in X\setminus\{x\}$, and $G_{x, y} \trianglelefteq G_x$. P. Cameron raised the question about the validity of the equality $G_{x, y} = 1$ in this case. The author proved earlier that, if the socle of $G$ is not a direct power of an exceptional group of Lie type distinct from $E_6(q)$, $^2E_6(q)$, $E_7(q)$ and $E_8(q)$, then $G_{x, y} = 1$. In the present paper, we prove this in the case when the socle of $G$ is a direct power of an exceptional group of Lie type isomorphic to $E_6(q)$, $^2E_6(q)$, or $E_7(q)$.
Mots-clés : primitive permutation group
Keywords: regular suborbit.
@article{TIMM_2015_21_3_a18,
     author = {A. V. Konygin},
     title = {On {Cameron's} question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {175--186},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 175
EP  - 186
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/
LA  - ru
ID  - TIMM_2015_21_3_a18
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 175-186
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/
%G ru
%F TIMM_2015_21_3_a18
A. V. Konygin. On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 175-186. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/