On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 175-186
Voir la notice de l'article provenant de la source Math-Net.Ru
Assume that $G$ is a primitive permutation group on a finite set $X$, $x\in X$, $y\in X\setminus\{x\}$, and $G_{x, y} \trianglelefteq G_x$. P. Cameron raised the question about the validity of the equality $G_{x, y} = 1$ in this case. The author proved earlier that, if the socle of $G$ is not a direct power of an exceptional group of Lie type distinct from $E_6(q)$, $^2E_6(q)$, $E_7(q)$ and $E_8(q)$, then $G_{x, y} = 1$. In the present paper, we prove this in the case when the socle of $G$ is a direct power of an exceptional group of Lie type isomorphic to $E_6(q)$, $^2E_6(q)$, or $E_7(q)$.
Mots-clés :
primitive permutation group
Keywords: regular suborbit.
Keywords: regular suborbit.
@article{TIMM_2015_21_3_a18,
author = {A. V. Konygin},
title = {On {Cameron's} question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {175--186},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/}
}
TY - JOUR AU - A. V. Konygin TI - On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 175 EP - 186 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/ LA - ru ID - TIMM_2015_21_3_a18 ER -
%0 Journal Article %A A. V. Konygin %T On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them %J Trudy Instituta matematiki i mehaniki %D 2015 %P 175-186 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/ %G ru %F TIMM_2015_21_3_a18
A. V. Konygin. On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 175-186. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/