On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 175-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Assume that $G$ is a primitive permutation group on a finite set $X$, $x\in X$, $y\in X\setminus\{x\}$, and $G_{x, y} \trianglelefteq G_x$. P. Cameron raised the question about the validity of the equality $G_{x, y} = 1$ in this case. The author proved earlier that, if the socle of $G$ is not a direct power of an exceptional group of Lie type distinct from $E_6(q)$, $^2E_6(q)$, $E_7(q)$ and $E_8(q)$, then $G_{x, y} = 1$. In the present paper, we prove this in the case when the socle of $G$ is a direct power of an exceptional group of Lie type isomorphic to $E_6(q)$, $^2E_6(q)$, or $E_7(q)$.
Mots-clés : primitive permutation group
Keywords: regular suborbit.
@article{TIMM_2015_21_3_a18,
     author = {A. V. Konygin},
     title = {On {Cameron's} question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {175--186},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 175
EP  - 186
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/
LA  - ru
ID  - TIMM_2015_21_3_a18
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 175-186
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/
%G ru
%F TIMM_2015_21_3_a18
A. V. Konygin. On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 175-186. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a18/

[1] Konygin A.V., “O primitivnykh gruppakh podstanovok so stabilizatorom dvukh tochek, normalnym v stabilizatore odnoi iz nikh”, Sib. elektron. mat. izv., 5 (2008), 387–406 | MR | Zbl

[2] Konygin A.V., “O primitivnykh gruppakh podstanovok so stabilizatorom dvukh tochek, normalnym v stabilizatore odnoi iz nikh: sluchai, kogda tsokol est stepen sporadicheskoi prostoi gruppy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 159–167

[3] Konygin A.V., “K voprosu P. Kamerona o primitivnykh gruppakh podstanovok so stabilizatorom dvukh tochek, normalnym v stabilizatore odnoi iz nikh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 187–198 | MR

[4] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 18-e, dop., In-t matematiki SO RAN, Novosibirsk, 2010, 253 pp. URL: http://math.nsc.ru/~alglog/alglogf.html

[5] Kertis Ch., Rainer I., Teoriya predstavleniya konechnykh grupp i assotsiativnykh algebr, Nauka, Moskva, 1969, 669 pp. | MR

[6] Aschbacher M., “The 27-dimensional module for $E_6$, I”, Invent. Math., 89:1 (1987), 159–195 | DOI | MR | Zbl

[7] Aschbacher M., “The 27-dimensional module for $E_6$, III”, Trans. Amer. Math. Soc., 321:1 (1990), 45–84 | MR | Zbl

[8] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[9] Benson D., Carlson J., “Nilpotent elements in the Green ring”, J. Algebra, 104:2 (1986), 329–350 | DOI | MR | Zbl

[10] Cameron P.J., “Suborbits in transitive permutation groups”, Combinatorics, Proc. NATO Advanced Study Inst.,Breukelen, 1974, Part 3: Combinatorial group theory., Math. Centre Tracts, 57, eds. M. Hall Jr. and J. H. van Lint, Amsterdam, 1974, 98–129 | MR

[11] Deriziotis D.I., Liebeck M.W., “Centralizers of semisimple elements in finite twisted groups of Lie type”, J. London Math. Soc., s2-31:1 (1985), 48–54 | DOI | MR | Zbl

[12] Humphreys J.E., Modular representations of finite groups of Lie type, Cambridge University Press, Cambridge, 2011, 206 pp. | MR

[13] Hiss G., “Finite groups of Lie type and their representations”, Groups St Andrews 2009 in Bath., v. 1, London Math. Soc. Lecture Note Ser., 387, Cambridge University Press, Cambridge, 2011, 1–40 | MR | Zbl

[14] Kleidman P.B., “The maximal subgroups of the finite $8$-dimensional orthogonal group $P\Omega_8(q)$ and their automorphism groups”, J. Algebra, 110:1 (1985), 173–242 | DOI | MR

[15] Kleidman P.B., “The maximal subgroups of the Steinberg triality group $^3D_4(q)$ and their automorphism groups”, J. Algebra, 115:1 (1988), 182–199 | DOI | MR | Zbl

[16] Liebeck M.W., Praeger Ch.E., Saxl J., “On the O'Nan–Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. Ser. A, 44:3 (1988), 389–396 | DOI | MR | Zbl

[17] Liebeck M.W., Saxl J., Seitz G.M., “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. London Math. Soc. (3), 65:2 (1992), 297–325 | DOI | MR | Zbl

[18] Liebeck M.W., Seitz G.M., “Maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Geom. Dedicata, 35:1–3 (1990), 353–387 | MR | Zbl

[19] Liebeck M.W., Seitz G.M., “The maximal subgroups of positive dimension in exceptional algebraic groups”, Mem. Amer. Math. Soc., 169:802 (2004), 227 pp. | MR

[20] Lübeck F., “Small degree representations of finite Chevalley groups in defining characteristic”, LMS J. Comput. Math., 4 (2001), 135–169 | DOI | MR | Zbl

[21] Malle G., Testerman D., Linear algebraic groups and finite groups of Lie type, Cambridge University Press, Cambridge, 2011, 309 pp. | MR | Zbl

[22] Reitz H.L., “On primitive groups of odd order”, Amer. J. Math., 26 (1904), 1–30 | DOI | MR

[23] Seitz G.M., Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc., 90, no. 441, 1991, 197 pp. | MR

[24] A.M. Cohen [et. al.], “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Mat. Soc. (3), 64 (1992), 21–48 | DOI | MR

[25] Weiss M.J., “On simply transitive groups”, Bull. Amer. Math. Soc., 40 (1934), 401–405 | DOI | MR | Zbl

[26] Wielandt H., Finite permutation groups, Acad. Press, New York, 1964, 114 pp. | MR | Zbl