@article{TIMM_2015_21_3_a17,
author = {A. I. Kibzun and V. R. Sobol'},
title = {A two-step problem of hedging a {European} call option under a random duration of transactions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {164--174},
year = {2015},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a17/}
}
TY - JOUR AU - A. I. Kibzun AU - V. R. Sobol' TI - A two-step problem of hedging a European call option under a random duration of transactions JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 164 EP - 174 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a17/ LA - ru ID - TIMM_2015_21_3_a17 ER -
%0 Journal Article %A A. I. Kibzun %A V. R. Sobol' %T A two-step problem of hedging a European call option under a random duration of transactions %J Trudy Instituta matematiki i mehaniki %D 2015 %P 164-174 %V 21 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a17/ %G ru %F TIMM_2015_21_3_a17
A. I. Kibzun; V. R. Sobol'. A two-step problem of hedging a European call option under a random duration of transactions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 164-174. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a17/
[1] Black F., Scholes M., “The pricing of options and corporate liabilities”, J. Polit. Econ., 81:3 (1973), 637–659 | DOI
[2] Zhang M.Y., Russell J., Tsay R.S., “A nonlinear autoregressive conditional duration model with applications to financial transaction data”, J. Econometrics, 104:1 (2001), 179–207 | DOI | MR | Zbl
[3] Dufour A., Engle R.F., Business School for Financial Markets (California: ISMA Centre), Discussion Papers in Finance: 2000-05, 2000, 58 pp.
[4] Felmer G., Shid A., Vvedenie v stokhasticheskie finansy. Diskretnoe vremya, MTsNMO, M., 2008, 496 pp.
[5] Zverev O.V., Khametov V.M., “Minimaksnoe khedzhirovanie optsionov evropeiskogo tipa na nepolnykh rynkakh (diskretnoe vremya)”, Obozrenie prikladnoi i promyshlennoi matematiki, 18:1 (2011), 26–54
[6] Zverev O.V., Khametov V.M., “Kvantilnoe khedzhirovanie optsionov evropeiskogo tipa na nepolnykh rynkakh bez treniya. Ch. 1. Superkhedzhirovanie”, Problemy upravleniya, 2014, no. 6, 31–44
[7] Kibzun A.I., Sobol V.R., “Modernizatsiya strategii posledovatelnogo khedzhirovaniya optsionnoi pozitsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2013), 179–192 | MR
[8] Bachelier L., “Theorie de la speculation”, Annales Scientifiques de lcole Normale Suprieure, 3 (1900), 21–86 | MR | Zbl
[9] Miller B.M., Pankov A.R., Teoriya sluchainykh protsessov v primerakh i zadachakh, Fizmatlit, M., 2002, 320 pp.
[10] Bertsekas D., Shriv S., Stokhasticheskoe optimalnoe upravlenie, Nauka, M., 1985, 280 pp. | MR