Exact penalties in a problem of constructing an optimal solution of a differential inclusion
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 153-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A differential inclusion with given set-valued mapping and initial point is considered. For this differential inclusion, it is required to find a solution that minimizes an integral functional. We use the techniques of support functions and exact penalty functions to obtain some classical results of the maximum principle for differential inclusions in the case where the support function of the set-valued mapping is continuously differentiable in the phase variables. We also consider the case where the support function of the set-valued mapping is not differentiable in the phase variables.
Keywords: nonsmooth functional, differential inclusion, support function, exact penalty function, maximum principle.
@article{TIMM_2015_21_3_a16,
     author = {V. V. Karelin and A. V. Fominykh},
     title = {Exact penalties in a problem of constructing an optimal solution of a differential inclusion},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {153--163},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a16/}
}
TY  - JOUR
AU  - V. V. Karelin
AU  - A. V. Fominykh
TI  - Exact penalties in a problem of constructing an optimal solution of a differential inclusion
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 153
EP  - 163
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a16/
LA  - ru
ID  - TIMM_2015_21_3_a16
ER  - 
%0 Journal Article
%A V. V. Karelin
%A A. V. Fominykh
%T Exact penalties in a problem of constructing an optimal solution of a differential inclusion
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 153-163
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a16/
%G ru
%F TIMM_2015_21_3_a16
V. V. Karelin; A. V. Fominykh. Exact penalties in a problem of constructing an optimal solution of a differential inclusion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 153-163. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a16/

[1] Blagodatskikh V.I., Filippov A.F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN SSSR, 169 (1985), 194–252 | MR | Zbl

[2] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 226 pp. | MR

[3] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, per. s angl., Mir, M., 1988, 512 pp. | MR

[4] Karelin V.V., “Tochnye shtrafy v zadache nablyudeniya”, Vest. SPbGU. Ser. 10, 2008, no. 4, 3–7 | MR

[5] Rokafellar R., Vypuklyi analiz, Mir, M, 1973, 470 pp.

[6] Eremin I.I., “Metod “shtrafov” v vypuklom programmirovanii”, Dokl. AN SSSR, 143:4 (1967), 748–751 | MR

[7] Blagodatskikh V.I., “Printsip maksimuma dlya differentsialnykh vklyuchenii”, Tr. MIAN CCCP, 169 (1985), 194–252 | MR | Zbl

[8] Vasilev L.V., Demyanov V.F., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[9] Demyanov V.F., Usloviya ekstremuma i variatsionnoe ischislenie, Vysshaya shkola, M., 2005, 335 pp.