Exact penalties in a problem of constructing an optimal solution of a differential inclusion
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 153-163
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A differential inclusion with given set-valued mapping and initial point is considered. For this differential inclusion, it is required to find a solution that minimizes an integral functional. We use the techniques of support functions and exact penalty functions to obtain some classical results of the maximum principle for differential inclusions in the case where the support function of the set-valued mapping is continuously differentiable in the phase variables. We also consider the case where the support function of the set-valued mapping is not differentiable in the phase variables.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonsmooth functional, differential inclusion, support function, exact penalty function, maximum principle.
                    
                  
                
                
                @article{TIMM_2015_21_3_a16,
     author = {V. V. Karelin and A. V. Fominykh},
     title = {Exact penalties in a problem of constructing an optimal solution of a differential inclusion},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {153--163},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a16/}
}
                      
                      
                    TY - JOUR AU - V. V. Karelin AU - A. V. Fominykh TI - Exact penalties in a problem of constructing an optimal solution of a differential inclusion JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 153 EP - 163 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a16/ LA - ru ID - TIMM_2015_21_3_a16 ER -
%0 Journal Article %A V. V. Karelin %A A. V. Fominykh %T Exact penalties in a problem of constructing an optimal solution of a differential inclusion %J Trudy Instituta matematiki i mehaniki %D 2015 %P 153-163 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a16/ %G ru %F TIMM_2015_21_3_a16
V. V. Karelin; A. V. Fominykh. Exact penalties in a problem of constructing an optimal solution of a differential inclusion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 153-163. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a16/
