Finite almost simple groups with prime graphs all of whose connected components are cliques
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 132-141
Voir la notice de l'article provenant de la source Math-Net.Ru
We find finite almost simple groups with prime graphs all of whose connected components are cliques, i.e., complete graphs. The proof is based on the following fact, which was obtained by the authors and is of independent interest: the prime graph of a finite simple nonabelian group contains two nonadjacent odd vertices that do not divide the order of the outer automorphism group of this group.
Keywords:
finite group, almost simple group, prime graph.
@article{TIMM_2015_21_3_a14,
author = {M. R. Zinov'eva and A. S. Kondrat'ev},
title = {Finite almost simple groups with prime graphs all of whose connected components are cliques},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {132--141},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a14/}
}
TY - JOUR AU - M. R. Zinov'eva AU - A. S. Kondrat'ev TI - Finite almost simple groups with prime graphs all of whose connected components are cliques JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 132 EP - 141 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a14/ LA - ru ID - TIMM_2015_21_3_a14 ER -
%0 Journal Article %A M. R. Zinov'eva %A A. S. Kondrat'ev %T Finite almost simple groups with prime graphs all of whose connected components are cliques %J Trudy Instituta matematiki i mehaniki %D 2015 %P 132-141 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a14/ %G ru %F TIMM_2015_21_3_a14
M. R. Zinov'eva; A. S. Kondrat'ev. Finite almost simple groups with prime graphs all of whose connected components are cliques. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 132-141. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a14/