On intersections of abelian and nilpotent subgroups in finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 128-131

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be an abelian subgroup of a finite group $G$, and let $B$ be a nilpotent subgroup of $G$. If $G$ is solvable, then we prove that it contains an element $g$ such that $A\bigcap B^g\le F(G)$, where $F(G)$ is the Fitting subgroup of $G$. If $G$ is not solvable, we prove that a counterexample of smallest order to the conjecture that $A\bigcap B^g\le F(G)$ for some element $g$ of $G$ is an almost simple group.
Keywords: finite group, abelian subgroup, nilpotent subgroup, intersection of subgroups, fitting subgroup.
@article{TIMM_2015_21_3_a13,
     author = {V. I. Zenkov},
     title = {On intersections of abelian and nilpotent subgroups in finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {128--131},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a13/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On intersections of abelian and nilpotent subgroups in finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 128
EP  - 131
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a13/
LA  - ru
ID  - TIMM_2015_21_3_a13
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On intersections of abelian and nilpotent subgroups in finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 128-131
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a13/
%G ru
%F TIMM_2015_21_3_a13
V. I. Zenkov. On intersections of abelian and nilpotent subgroups in finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 128-131. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a13/