On intersections of abelian and nilpotent subgroups in finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 128-131
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A$ be an abelian subgroup of a finite group $G$, and let $B$ be a nilpotent subgroup of $G$. If $G$ is solvable, then we prove that it contains an element $g$ such that $A\bigcap B^g\le F(G)$, where $F(G)$ is the Fitting subgroup of $G$. If $G$ is not solvable, we prove that a counterexample of smallest order to the conjecture that $A\bigcap B^g\le F(G)$ for some element $g$ of $G$ is an almost simple group.
Keywords:
finite group, abelian subgroup, nilpotent subgroup, intersection of subgroups, fitting subgroup.
@article{TIMM_2015_21_3_a13,
author = {V. I. Zenkov},
title = {On intersections of abelian and nilpotent subgroups in finite groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {128--131},
year = {2015},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a13/}
}
V. I. Zenkov. On intersections of abelian and nilpotent subgroups in finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 128-131. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a13/
[1] Zenkov V.I., “Peresechenie abelevykh podgrupp v konechnykh gruppakh”, Mat. zametki, 56:1-2 (1994), 150–152 | MR | Zbl
[2] Jamali A., Viseh M., “On nilpotent subgroups containing non-trivial normal subgroups”, J. Group Theory, 3:3 (2010), 411–416 | MR | Zbl
[3] Kargapolov M.I., Merzlyakov Yu.I., Osnovy teorii grupp, Nauka, M., 1982, 288 pp. | MR
[4] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp. | MR
[5] Zenkov V.I., “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fundamental. i prikl. matematika, 2:1 (1996), 1–92 | MR | Zbl
[6] Dixon J.D., Mortimer B., Permutation groups, Springer-Verlaq, New York, 1996, 346 pp. | MR | Zbl