On a variant of the simplex method for a linear semidefinite programming problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 117-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear semidefinite programming problem is considered. A variant of the primal simplex method, which generalizes the corresponding method for linear programming problems, is proposed for this problem. A passage from an extreme point of the admissible set to another extreme point is described.
Keywords: linear semidefinite programming problem, extreme points, primal simplex-type method.
@article{TIMM_2015_21_3_a12,
     author = {V. G. Zhadan},
     title = {On a variant of the simplex method for a linear semidefinite programming problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {117--127},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a12/}
}
TY  - JOUR
AU  - V. G. Zhadan
TI  - On a variant of the simplex method for a linear semidefinite programming problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 117
EP  - 127
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a12/
LA  - ru
ID  - TIMM_2015_21_3_a12
ER  - 
%0 Journal Article
%A V. G. Zhadan
%T On a variant of the simplex method for a linear semidefinite programming problem
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 117-127
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a12/
%G ru
%F TIMM_2015_21_3_a12
V. G. Zhadan. On a variant of the simplex method for a linear semidefinite programming problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 117-127. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a12/

[1] Eremin I.I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 312 pp.

[2] Vasilev F.P., Ivanitskii A.Yu., Lineinoe programmirovanie, Faktorial Press, M., 2008, 347 pp. | MR

[3] Vanderbei R.J., Linear programming. Foundations and extensions, Kluwer Acad. Publ., Boston; London; Dordrecht, 1997, 418 pp. | MR

[4] Handbook of semidefinite programming, eds. H. Wolkowicz, R. Saigal, L. Vandenberghe, Kluwer Acad. Publ., Dordrecht, 2000, 656 pp. | MR

[5] Lasserre J.B., “Linear programming with positive semi-definite matreces”, Math. Problems in Engineering, 2:6 (1996), 499–522 | DOI | Zbl

[6] Pataki G., “Cone-LP's and semidefinite programs: geometry and simplex-type method”, Proc. Conf. on Integer Programming and Combinatorial Optimization (IPCO 5), Vancouver, 1996, 1–13

[7] Kosolap A.I., “Simpleks-metod dlya resheniya zadach poluopredelennogo programmirovaniya”, Vestn. Donets. nats. un-ta, (Ser. A: Estestvennye nauki), 2009, no. 2, 365–369

[8] Zhadan V.G., “Ob odnom variante dopustimogo affinno-masshtabiruyuschego metoda dlya poluopredelennogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 145–160 | MR

[9] Magnus Ya.R., Neidekker Ch., Matrichnoe differentsialnoe ischislenie s prilozheniyami k statistike i ekonometrike, Fizmatlit, M., 2002, 496 pp.

[10] Arnold V.I., “O matritsakh, zavisyaschikh ot parametrov”, Uspekhi mat. nauk, 26:2(158) (1971), 101–114 | MR

[11] Alizadeh F., Haeberly J.-P.F., Overton M.L., “Complementarity and nondegeneracy in semidefinite programming”, Math. Programming. Ser. B, 7:2 (1997), 129–162 | MR