On a variant of the simplex method for a linear semidefinite programming problem
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 117-127
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A linear semidefinite programming problem is considered. A variant of the primal simplex method, which generalizes the corresponding method for linear programming problems, is proposed for this problem. A passage from an extreme point of the admissible set to another extreme point is described.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
linear semidefinite programming problem, extreme points, primal simplex-type method.
                    
                  
                
                
                @article{TIMM_2015_21_3_a12,
     author = {V. G. Zhadan},
     title = {On a variant of the simplex method for a linear semidefinite programming problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {117--127},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a12/}
}
                      
                      
                    TY - JOUR AU - V. G. Zhadan TI - On a variant of the simplex method for a linear semidefinite programming problem JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 117 EP - 127 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a12/ LA - ru ID - TIMM_2015_21_3_a12 ER -
V. G. Zhadan. On a variant of the simplex method for a linear semidefinite programming problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 117-127. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a12/
