@article{TIMM_2015_21_3_a10,
author = {A. V. Dolgushev and A. V. Kel'manov and V. V. Shenmaier},
title = {Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {100--109},
year = {2015},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a10/}
}
TY - JOUR AU - A. V. Dolgushev AU - A. V. Kel'manov AU - V. V. Shenmaier TI - Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 100 EP - 109 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a10/ LA - ru ID - TIMM_2015_21_3_a10 ER -
%0 Journal Article %A A. V. Dolgushev %A A. V. Kel'manov %A V. V. Shenmaier %T Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters %J Trudy Instituta matematiki i mehaniki %D 2015 %P 100-109 %V 21 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a10/ %G ru %F TIMM_2015_21_3_a10
A. V. Dolgushev; A. V. Kel'manov; V. V. Shenmaier. Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 100-109. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a10/
[1] D. Aloise, A. Deshpande, P. Hansen, P. Popat, “$NP$-hardness of Euclidean sum-of-squares clustering”, Machine Learning, 75:2 (2009), 245–248 | DOI
[2] Anil K., Jain K., “Data clustering: 50 years beyond $k$-means”, Pattern Recognition Letters, 31 (2010), 651–666 | DOI
[3] Garey M.R., Johnson D.S., Computers and intractability: a guide to the theory of $NP$-completeness, Freeman, San Francisco, 1979, 314 pp. | MR | Zbl
[4] E.Kh. Gimadi, A.V. Kel'manov, M.A. Kel'manova, S.A. Khamidullin, “A posteriori detecting a quasiperiodic fragment in a numerical sequence”, Pattern Recognition and Image Analysis, 18:1 (2008), 30–42 | DOI | MR
[5] Kel'manov A., Khandeev V., “An exact pseudopolynomial algorithm for a bi-partitioning problem”, Optimization and Applications — OPTIMA-2014, Proc. V Intern. Conf. (Petrovac, Montenegro, September 28 – October 4), Dorodnicyn Computing Centre of RAS, Moscow, 2014, 108–109
[6] Wirth N., Algorithms + Data Structures = Programs, Prentice-Hall Series in Automatic Computation, Prentice Hall, New Jersey, 1976, 366 pp. | MR | Zbl
[7] A.E. Baburin, E.Kh. Gimadi, N.I. Glebov, A.V. Pyatkin, “Zadacha otyskaniya podmnozhestva vektorov s maksimalnym summarnym vesom”, Diskret. analiz i issled. oper., 14:1 (2007), 32–42 | MR | Zbl
[8] Gimadi E.Kh., Glazkov Yu.V., Rykov I.A., “O dvukh zadachakh vybora podmnozhestva vektorov s tselochislennymi koordinatami v evklidovom prostranstve s maksimalnoi normoi summy razmernosti”, Diskret. analiz i issled. oper., 15:4 (2008), 30–43 | MR | Zbl
[9] E.Kh. Gimadi, A.V. Kelmanov, M.A. Kelmanova, S.A. Khamidullin, “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurn. industr. matematiki, 9:1(25) (2006), 55–74 | MR | Zbl
[10] Gimadi E.Kh., Pyatkin A.V., Rykov I.A., “O polinomialnoi razreshimosti nekotorykh zadach vybora podmnozhestv vektorov v evklidovom prostranstve fiksirovannoi razmernosti”, Diskret. analiz i issled. oper., 15:6 (2008), 11–19 | MR | Zbl
[11] Dolgushev A.V., Kelmanov A.V., “Priblizhennyi algoritm resheniya odnoi zadachi klasternogo analiza”, Diskret. analiz i issledovanie operatsii, 18:2 (2011), 29–40 | Zbl
[12] Kelmanov A.V., “O slozhnosti nekotorykh zadach analiza dannykh”, Zhurn. vychisl. matematiki i mat. fiziki, 50:11 (2010), 2045–2051 | MR | Zbl
[13] Kelmanov A.V., “O slozhnosti nekotorykh zadach klasternogo analiza”, Zhurn. vychisl. matematiki i mat. fiziki, 51:11 (2011), 2106–2112 | MR | Zbl
[14] Kelmanov A.V., Pyatkin A.V., “O slozhnosti odnogo iz variantov zadachi vybora podmnozhestva “pokhozhikh” vektorov”, Dokl. AN, 421:5 (2008), 590–592 | Zbl
[15] Kelmanov A.V., Pyatkin A.V., “Ob odnom variante zadachi vybora podmnozhestva vektorov”, Diskret. analiz i issled. oper., 15:5 (2008), 20–34 | MR | Zbl
[16] Kelmanov A.V., Pyatkin A.V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zhurn. vychisl. matematiki i mat. fiziki, 49:11 (2009), 2059–2067 | MR
[17] Kelmanov A.V., Khandeev V.I., “FPTAS dlya odnoi zadachi dvukhklasternogo razbieniya mnozhestva vektorov”, Matematicheskoe programmirovanie i prilozheniya, tez. dokl. XV Vseros. konf. (In-t matematiki i mekhaniki UrO RAN. Ekaterinburg), 2015, 141
[18] Kelmanov A.V., Khandeev V.I., “Randomizirovannyi algoritm dlya odnoi zadachi dvukhklasternogo razbieniya mnozhestva vektorov”, Zhurn. vychisl. matematiki i mat. fiziki, 55:2 (2015), 335–344 | DOI | MR | Zbl
[19] Shenmaier V.V., “Approksimatsionnaya skhema dlya odnoi zadachi poiska podmnozhestva vektorov”, Diskret. analiz i issled. oper., 19:2 (2012), 92–100 | MR | Zbl