On an inverse linear programming problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 13-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method for solving the following inverse linear programming (LP) problem is proposed. For a given LP problem and one of its feasible vectors, it is required to adjust the objective function vector as little as possible so that the given vector becomes optimal. The closeness of vectors is estimated by means of the Euclidean vector norm. The inverse LP problem is reduced to a problem of unconstrained minimization for a convex piecewise quadratic function. This minimization problem is solved by means of the generalized Newton method.
Keywords: linear programming, inverse linear programming problem, duality, unconstrained optimization, generalized newton method.
@article{TIMM_2015_21_3_a1,
     author = {G. A. Amirkhanova and A. I. Golikov and Yu. G. Evtushenko},
     title = {On an inverse linear programming problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {13--19},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a1/}
}
TY  - JOUR
AU  - G. A. Amirkhanova
AU  - A. I. Golikov
AU  - Yu. G. Evtushenko
TI  - On an inverse linear programming problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 13
EP  - 19
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a1/
LA  - ru
ID  - TIMM_2015_21_3_a1
ER  - 
%0 Journal Article
%A G. A. Amirkhanova
%A A. I. Golikov
%A Yu. G. Evtushenko
%T On an inverse linear programming problem
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 13-19
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a1/
%G ru
%F TIMM_2015_21_3_a1
G. A. Amirkhanova; A. I. Golikov; Yu. G. Evtushenko. On an inverse linear programming problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 13-19. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a1/

[1] Zhang J., Liu Z., “Calculating some inverse linear programming problems”, J. Comput. Appl. Math., 72:2 (1996), 261–273 | DOI | MR | Zbl

[2] Zhang J., Liu Z., “A further study on inverse linear programming problems”, J. Comput. Appl. Math., 106:2 (1999), 345–359 | DOI | MR | Zbl

[3] Ahuja R.K., Orlin J.B., “Inverse Optimization”, Operations Research, 49:5 (2001), 771–783 | DOI | MR | Zbl

[4] Mangasarian O.L., “A finite Newton method for classification”, Optimizat. Meth. and Software, 17:5 (2002), 913–930 | DOI | MR

[5] Kanzow C., Qi H., Qi L., “On the minimum norm solution of linear programs”, J. Optim. Theory Appl., 116 (2003), 333–345 | DOI | MR | Zbl

[6] Mangasarian O.L., “A Newton method for linear programming”, J. Optim. Theory Appl., 121 (2004), 1–18 | DOI | MR | Zbl

[7] Eremin I.I., Mazurov V.D., Astafev N.N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 335 pp. | MR

[8] Eremin I.I., Teoriya dvoistvennosti v lineinoi optimizatsii, Izd-vo Yuzh.-Ural. gos. un-ta, Chelyabinsk, 2005, 195 pp. | MR

[9] Popov L.D., “Dvoistvennyi podkhod k primeneniyu barernykh funktsii dlya optimalnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya 1-go roda”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 231–237 | MR

[10] Golikov A.I., Evtushenko Yu.G., Mollaverdi N., “Primenenie metoda Nyutona k resheniyu zadach lineinogo programmirovaniya bolshoi razmernosti”, Zhurn. vychisl. matematiki i mat. fiziki, 44:9 (2004), 1564–1573 | MR | Zbl

[11] Golikov A.I., Evtushenko Yu.G., “Obobschennyi metod Nyutona dlya zadach lineinoi optimizatsii s ogranicheniyami-neravenstvami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 98–108 | MR

[12] Popov L.D., “Kvadratichnaya approksimatsiya shtrafnykh funktsii pri reshenii zadach lineinogo programmirovaniya bolshoi razmernosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:2 (2007), 206–221 | MR | Zbl

[13] V.A. Garanzha, A.I. Golikov, Yu.G. Evtushenko, M.Kh. Nguen, “Parallelnaya realizatsiya metoda Nyutona dlya resheniya bolshikh zadach lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 49:8 (2009), 1369–1384 | MR | Zbl

[14] Popov L.D., “Opyt organizatsii gibridnykh parallelnykh vychislenii v metode Evtushenko—Golikova dlya zadach s blochno-angulyarnoi strukturoi ogranichenii”, Avtomatika i telemekhanika, 2014, no. 4, 38–50

[15] Evtushenko Yu.G., Zhadan V.G., Barerno-proektivnye i barerno-nyutonovskie chislennye metody optimizatsii(sluchai lineinogo programmirovaniya), Izd-vo VTs RAN, M., 1992, 76 pp.

[16] Roos S., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization. An interior point approach, Wiley, Chichester, 1997, 508 pp. | MR | Zbl

[17] Golikov A.I., Evtushenko Yu.G., “Nakhozhdenie normalnykh reshenii v zadachakh lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 40:12 (2000), 1766–1386 | MR

[18] Golikov A.I., Evtushenko Yu.G., “Dva parametricheskikh semeistva zadach lineinogo programmirovaniya i ikh prilozheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8:4 (2002), 31–44