On an inverse linear programming problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 13-19

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for solving the following inverse linear programming (LP) problem is proposed. For a given LP problem and one of its feasible vectors, it is required to adjust the objective function vector as little as possible so that the given vector becomes optimal. The closeness of vectors is estimated by means of the Euclidean vector norm. The inverse LP problem is reduced to a problem of unconstrained minimization for a convex piecewise quadratic function. This minimization problem is solved by means of the generalized Newton method.
Keywords: linear programming, inverse linear programming problem, duality, unconstrained optimization, generalized newton method.
@article{TIMM_2015_21_3_a1,
     author = {G. A. Amirkhanova and A. I. Golikov and Yu. G. Evtushenko},
     title = {On an inverse linear programming problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {13--19},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a1/}
}
TY  - JOUR
AU  - G. A. Amirkhanova
AU  - A. I. Golikov
AU  - Yu. G. Evtushenko
TI  - On an inverse linear programming problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 13
EP  - 19
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a1/
LA  - ru
ID  - TIMM_2015_21_3_a1
ER  - 
%0 Journal Article
%A G. A. Amirkhanova
%A A. I. Golikov
%A Yu. G. Evtushenko
%T On an inverse linear programming problem
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 13-19
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a1/
%G ru
%F TIMM_2015_21_3_a1
G. A. Amirkhanova; A. I. Golikov; Yu. G. Evtushenko. On an inverse linear programming problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 13-19. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a1/