@article{TIMM_2015_21_3_a1,
author = {G. A. Amirkhanova and A. I. Golikov and Yu. G. Evtushenko},
title = {On an inverse linear programming problem},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {13--19},
year = {2015},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a1/}
}
G. A. Amirkhanova; A. I. Golikov; Yu. G. Evtushenko. On an inverse linear programming problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 13-19. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a1/
[1] Zhang J., Liu Z., “Calculating some inverse linear programming problems”, J. Comput. Appl. Math., 72:2 (1996), 261–273 | DOI | MR | Zbl
[2] Zhang J., Liu Z., “A further study on inverse linear programming problems”, J. Comput. Appl. Math., 106:2 (1999), 345–359 | DOI | MR | Zbl
[3] Ahuja R.K., Orlin J.B., “Inverse Optimization”, Operations Research, 49:5 (2001), 771–783 | DOI | MR | Zbl
[4] Mangasarian O.L., “A finite Newton method for classification”, Optimizat. Meth. and Software, 17:5 (2002), 913–930 | DOI | MR
[5] Kanzow C., Qi H., Qi L., “On the minimum norm solution of linear programs”, J. Optim. Theory Appl., 116 (2003), 333–345 | DOI | MR | Zbl
[6] Mangasarian O.L., “A Newton method for linear programming”, J. Optim. Theory Appl., 121 (2004), 1–18 | DOI | MR | Zbl
[7] Eremin I.I., Mazurov V.D., Astafev N.N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 335 pp. | MR
[8] Eremin I.I., Teoriya dvoistvennosti v lineinoi optimizatsii, Izd-vo Yuzh.-Ural. gos. un-ta, Chelyabinsk, 2005, 195 pp. | MR
[9] Popov L.D., “Dvoistvennyi podkhod k primeneniyu barernykh funktsii dlya optimalnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya 1-go roda”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 231–237 | MR
[10] Golikov A.I., Evtushenko Yu.G., Mollaverdi N., “Primenenie metoda Nyutona k resheniyu zadach lineinogo programmirovaniya bolshoi razmernosti”, Zhurn. vychisl. matematiki i mat. fiziki, 44:9 (2004), 1564–1573 | MR | Zbl
[11] Golikov A.I., Evtushenko Yu.G., “Obobschennyi metod Nyutona dlya zadach lineinoi optimizatsii s ogranicheniyami-neravenstvami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 98–108 | MR
[12] Popov L.D., “Kvadratichnaya approksimatsiya shtrafnykh funktsii pri reshenii zadach lineinogo programmirovaniya bolshoi razmernosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:2 (2007), 206–221 | MR | Zbl
[13] V.A. Garanzha, A.I. Golikov, Yu.G. Evtushenko, M.Kh. Nguen, “Parallelnaya realizatsiya metoda Nyutona dlya resheniya bolshikh zadach lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 49:8 (2009), 1369–1384 | MR | Zbl
[14] Popov L.D., “Opyt organizatsii gibridnykh parallelnykh vychislenii v metode Evtushenko—Golikova dlya zadach s blochno-angulyarnoi strukturoi ogranichenii”, Avtomatika i telemekhanika, 2014, no. 4, 38–50
[15] Evtushenko Yu.G., Zhadan V.G., Barerno-proektivnye i barerno-nyutonovskie chislennye metody optimizatsii(sluchai lineinogo programmirovaniya), Izd-vo VTs RAN, M., 1992, 76 pp.
[16] Roos S., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization. An interior point approach, Wiley, Chichester, 1997, 508 pp. | MR | Zbl
[17] Golikov A.I., Evtushenko Yu.G., “Nakhozhdenie normalnykh reshenii v zadachakh lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 40:12 (2000), 1766–1386 | MR
[18] Golikov A.I., Evtushenko Yu.G., “Dva parametricheskikh semeistva zadach lineinogo programmirovaniya i ikh prilozheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8:4 (2002), 31–44