Finite groups whose prime graphs do not contain triangles. I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Finite groups whose prime graphs do not contain triangles are investigated. In the present part of the work, the isomorphic types of prime graphs and estimates of the Fitting length of solvable groups are found and also almost simple groups are determined.
Keywords: finite group, almost simple group, prime graph.
Mots-clés : solvable group
@article{TIMM_2015_21_3_a0,
     author = {O. A. Alekseeva and A. S. Kondrat'ev},
     title = {Finite groups whose prime graphs do not contain triangles. {I}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--12},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a0/}
}
TY  - JOUR
AU  - O. A. Alekseeva
AU  - A. S. Kondrat'ev
TI  - Finite groups whose prime graphs do not contain triangles. I
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 3
EP  - 12
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a0/
LA  - ru
ID  - TIMM_2015_21_3_a0
ER  - 
%0 Journal Article
%A O. A. Alekseeva
%A A. S. Kondrat'ev
%T Finite groups whose prime graphs do not contain triangles. I
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 3-12
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a0/
%G ru
%F TIMM_2015_21_3_a0
O. A. Alekseeva; A. S. Kondrat'ev. Finite groups whose prime graphs do not contain triangles. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 3-12. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a0/

[1] A. Gruber, T.M. Keller, M.L. Lewis, K. Naughton, B. Strasser, A characterization of the prime graphs of solvable groups, URL: , J. Algebra http://dx.doi.org/10.1016/j.jalgebra.2014.08.040

[2] Burbaki N., Gruppy i algebry Li, Gl. IV-VI, Mir, M., 1972, 334 pp. | MR

[3] Vasilev A.V., Vdovin E.P., “Kriterii smezhnosti v grafe prostykh chisel”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[4] Vasilev A.V., Vdovin E.P., “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[5] Kondratev A.S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | MR | Zbl

[6] Kondratiev A.S., “Finite almost simple $5$–primary groups i their Gruenberg–Kegel graphs”, Sib. elektron. mat. izv., 11 (2014), 634–674

[7] Kondratev A.S., Khramtsov I.V., “O konechnykh triprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 150–158

[8] Kondratev A.S., Khramtsov I.V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 142–159

[9] Mazurov V.D., “Kharakterizatsii konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[10] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[11] J.H. Conway [et. al.]., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[12] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013, 438 pp. | MR | Zbl

[13] Chen Z.M., Shi W.J., “On simple $C_{pp}$-groups”, J. Southwest China Normal Univ., 18:3 (1993), 249–256 (In Chinese)

[14] Gorenstein D., Finite groups, Harper and Row, N. Y., 1968, 528 pp. | MR | Zbl

[15] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Number 3. Part I, Math. Surveys Monogr., 40, no. 3, Amer. Math. Soc., Providence, RI, 1998, 420 pp. | MR | Zbl

[16] Hartley B., Meixner T., “Finite soluble groups containing an element of prime order whose centralizer is small”, Arch. Math. (Basel), 36:3 (1981), 211–213 | DOI | MR | Zbl

[17] Higman G., “Finite groups in which every element has prime power order”, J. London Math. Soc.(2), 32 (1957), 335–342 | DOI | MR | Zbl

[18] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Ser., 129, Cambridge University Press, Cambridge, 1990, 303 pp. | MR | Zbl

[19] Lucido M.C., “The diameter of the prime graph of finite groups”, J. Group Theory, 2:2 (1999), 157–172 | DOI | MR | Zbl

[20] Lucido M.C., “Groups in which the prime graph is a tree”, Boll. Unione Mat. Ital. (8), 5-B:1 (2002), 131–148 | MR | Zbl

[21] Malle G., “The maximal subgroups of ${^2}F_4(q^2)$”, J. Algebra, 139:1 (1991), 52–68 | DOI | MR

[22] A.L. Gavrilyuk, I.V. Khramtsov, A.S. Kondrat'ev, N.V. Maslova, “On realizability of a graph as the prime graph of a finite group”, Sib. elektron. mat. izv., 11 (2014), 246–257

[23] Stensholt E., “Certain embeddings among finite groups of Lie type”, J. Algebra, 53:1 (1978), 136–187 | DOI | MR | Zbl

[24] Suzuki M., “On a class of doubly transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[25] Williams J.S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[26] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3:1 (1892), 265–284 | DOI | MR | Zbl