Optimal control for proportional economic growth
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 115-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The research is focused on the question of proportional development in economic growth modeling. A multilevel dynamic optimization model is developed for the construction of balanced proportions for production factors and investments in a situation of changing prices. At the first level, models with production functions of different types are examined within the classical static optimization approach. It is shown that all these models possess the property of proportionality: in the solution of product maximization and cost minimization problems, production factor levels are directly proportional to each other with coefficients of proportionality depending on prices and elasticities of production functions. At the second level, proportional solutions of the first level are transferred to an economic growth model to solve the problem of dynamic optimization for the investments in production factors. Due to proportionality conditions and the homogeneity condition of degree 1 for the macroeconomic production functions, the original nonlinear dynamics is converted to a linear system of differential equations that describe the dynamics of production factors. In the conversion, all peculiarities of the nonlinear model are hidden in a time-dependent scale factor (total factor productivity) of the linear model, which is determined by proportions between prices and elasticity coefficients of the production functions. For a control problem with linear dynamics, analytic formulas are obtained for optimal development trajectories within the Pontryagin maximum principle for statements with finite and infinite horizons. It is shown that solutions of these two problems differ crucially from each other: in finite horizon problems the optimal investment strategy inevitably has the zero regime at the final stage, whereas the infinite horizon problem always has a strictly positive solution. A remarkable result of the proposed model consists in constructive analytical solutions for optimal investments in production factors, which depend on the price dynamics and other economic parameters such as elasticity coefficients of production functions, total factor productivity, and depreciation factors. This feature serves as a background for the productive fusion of optimization models for investments in production factors in the framework of a multilevel structure and provides a solid basis for constructing optimal trajectories of economic development.
Keywords: optimal control, Pontryagin maximum principle, multilevel optimization, proportional economic growth.
@article{TIMM_2015_21_2_a9,
     author = {A. V. Kryazhimskiy and A. M. Tarasyev},
     title = {Optimal control for proportional economic growth},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {115--133},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a9/}
}
TY  - JOUR
AU  - A. V. Kryazhimskiy
AU  - A. M. Tarasyev
TI  - Optimal control for proportional economic growth
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 115
EP  - 133
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a9/
LA  - ru
ID  - TIMM_2015_21_2_a9
ER  - 
%0 Journal Article
%A A. V. Kryazhimskiy
%A A. M. Tarasyev
%T Optimal control for proportional economic growth
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 115-133
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a9/
%G ru
%F TIMM_2015_21_2_a9
A. V. Kryazhimskiy; A. M. Tarasyev. Optimal control for proportional economic growth. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 115-133. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a9/

[1] Arrow K.J., Production and capital. Collected papers, 5, The Belknap Press of Harvard University Press, Cambridge; Massachusetts; London, 1985, 496 pp.

[2] Barro R.J., Sala-i-Martin X., Economic growth, McGraw-Hill, New York, 1995, 672 pp.

[3] Grossman G.M., Helpman E., Innovation and growth in the global economy, MIT Press, Cambridge; Massachusetts, 1991, 359 pp.

[4] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical Systems Theory and Economics, 1, Springer Verlag, Berlin, 1969, 241–292 | DOI | MR

[5] Solow R.M., Growth theory: An Exposition, Oxford Univ. Press, New York, 1970, 109 pp.

[6] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, AIRIS PRESS, M., 2002, 553 pp.

[7] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[8] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257 (2007), 5–271 | MR | Zbl

[9] Aseev S.M., Veliov V.M., “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dynamics of Continuous, Discrete and Impulsive Systems. Ser. B: Applications Algorithms, 19:1–2 (2012), 43–63 | MR | Zbl

[10] Nikol'skii M.S., “Investigation of the continuity and Lipschitz properties for the Bellman function in some optimization problems on the semi-infinite interval $[0, + \infty)$”, Diff. Eq., 38:11 (2002), 1599–1604 | DOI | MR

[11] Balder E.J., “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95 (1983), 195–213 | DOI | MR | Zbl

[12] Tarasyev A.M., Watanabe C., “Optimal dynamics of innovation in models of economic growth”, J. Math. Anal. Appl., 108 (2001), 175–203 | MR | Zbl

[13] Kryazhimskiy A.V., Watanabe C., Optimization of technological growth, GENDAITOSHO, Kanagawa, 2004, 392 pp.

[14] Krasovskii A.A., Tarasev A.M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Tr. MIAN, 262 (2008), 127–145 | MR | Zbl

[15] Krasovskii A.A., Tarasyev A.M., “An algorithm for construction of optimal timing solutions in problems with a stochastic payoff function”, Appl. Math. Comput., 204:2 (2008), 632–643 | DOI | MR | Zbl

[16] Krasovskii A.A., Kryazhimskiy A.V., Tarasyev A.M., “Optimal control design in models of economic growth”, Evolutionary methods for design, optimization and control, eds. P. Neittaanmaki, J. Periaux, T. Tuovinen, CIMNE, Barcelona, 2008, 70–75

[17] Crespo Cuaresma J., Palokangas T., Tarasyev A., Dynamic systems, economic growth and the environment, Dynamic Modeling and Econometrics in Economics and Finance, Springer, Heidelberg; New York; Dordrecht; London, 2010, 289 pp. | DOI | Zbl

[18] Crespo Cuaresma J., Palokangas T., Tarasyev A., Green growth and sustainable development, Dynamic Modeling and Econometrics in Economics and Finance, Springer, Heidelberg; New York; Dordrecht; London, 2013, 226 pp. | DOI | MR | Zbl

[19] Tarasev A.M., Usova A.A., “Stabilizatsiya gamiltonovoi sistemy dlya postroeniya optimalnykh traektorii”, Tr. MIAN, 277 (2012), 257–274 | MR

[20] A.M. Tarasev, A.A. Usova, O.V. Russkikh, V. Vang, “Postroenie optimalnykh traektorii integrirovaniem gamiltonovoi dinamiki v modelyakh ekonomicheskogo rosta pri resursnykh ogranicheniyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 258–276

[21] Tarasyev A.M., Usova A.A., Shmotina Yu.V., “Projection of the Russian economic development in the framework of the optimal control model by investments in fixed assets”, Economy of Region, 2014, no. 3, 265–273 | DOI

[22] B.S.Jensen, P.K. Alsholm, M.E. Larsen, J.M. Jensen, “Dynamic structure, exogeneity, phase portraits, growth paths, and scale and substitution elasticities”, Review of International Economics, 13:1 (2005), 59–89 | DOI

[23] Hofbauer J., Sigmund K., The theory of evolution and dynamical systems, Cambridge University Press, Cambridge, 1988, 341 pp. | MR | Zbl

[24] Kryazhimskii A.V., Osipov Yu.S., “O differentsialno-evolyutsionnykh igrakh”, Tr. MIAN, 211 (1995), 257–287 | MR

[25] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR