Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 102-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a class of nonlinear control systems, we describe a method for the reconstruction of the dynamics and controls from known inaccurate measurements of state trajectories. The method is based on Pontryagin's maximum principle and Tikhonov's regularization method. A validation of the method is provided.
Mots-clés : dynamic reconstruction
Keywords: optimal control, Pontryagin's maximum principle.
@article{TIMM_2015_21_2_a8,
     author = {E. A. Krupennikov},
     title = {Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {102--114},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a8/}
}
TY  - JOUR
AU  - E. A. Krupennikov
TI  - Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 102
EP  - 114
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a8/
LA  - ru
ID  - TIMM_2015_21_2_a8
ER  - 
%0 Journal Article
%A E. A. Krupennikov
%T Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 102-114
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a8/
%G ru
%F TIMM_2015_21_2_a8
E. A. Krupennikov. Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 102-114. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a8/

[1] Osipov Yu.S., Vasilev F.P., Potapov M.M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 237 pp.

[2] Tikhonov A.N., “Ob ustoichivosti obratnykh zadach”, Dokl. AN SSSR, 39:4 (1943), 195–198 | MR

[3] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[4] Subbotina N.N., Tokmantsev T.B., “Issledovanie ustoichivosti resheniya obratnykh zadach dinamiki upravlyaemykh sistem po otnosheniyu k vozmuscheniyam vkhodnykh dannykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 218–233

[5] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 393 pp.

[6] N.N. Subbotina, E.A. Kolpakova, T.B. Tokmantsev, L.G. Shagalova, Metod kharakteristik dlya uravneniya Gamiltona-Yakobi-Bellmana, Izd-vo UrO RAN, Ekaterinburg, 2013, 244 pp.

[7] Evans L.K., Gariepi K.F., Teoriya mery i tonkie svoistva funktsii, Nauchnaya kniga (IDMI), Novosibirsk, 2002, 207 pp.

[8] Albrekht E.G., , Issledovano v Rossii [Elektron. zhurn], 5, 2002 http://zhurnal.ape.relarn.ru/articles/2002/005.pdf