Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 102-114

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of nonlinear control systems, we describe a method for the reconstruction of the dynamics and controls from known inaccurate measurements of state trajectories. The method is based on Pontryagin's maximum principle and Tikhonov's regularization method. A validation of the method is provided.
Mots-clés : dynamic reconstruction
Keywords: optimal control, Pontryagin's maximum principle.
@article{TIMM_2015_21_2_a8,
     author = {E. A. Krupennikov},
     title = {Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {102--114},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a8/}
}
TY  - JOUR
AU  - E. A. Krupennikov
TI  - Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 102
EP  - 114
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a8/
LA  - ru
ID  - TIMM_2015_21_2_a8
ER  - 
%0 Journal Article
%A E. A. Krupennikov
%T Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 102-114
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a8/
%G ru
%F TIMM_2015_21_2_a8
E. A. Krupennikov. Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 102-114. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a8/