On a minimax control problem for a positional functional under geometric and integral constraints on control actions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 87-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Within the game-theoretical approach we consider a minimax feedback control problem for a linear dynamical system with a positional quality index in the form of the norm of motion deviations at given times from given target points. Control actions are subject to both geometric and integral constraints. A procedure for the approximate calculation of the optimal guaranteed result and for the construction of a control law that ensures the result is developed. The procedure is based on the recursive construction of upper convex hulls of auxiliary program functions. Results of numerical simulations are presented.
Keywords: minimax control, differential games, integral constraints, nonterminal payoff.
@article{TIMM_2015_21_2_a7,
     author = {D. V. Kornev and N. Yu. Lukoyanov},
     title = {On a minimax control problem for a positional functional under geometric and integral constraints on control actions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {87--101},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a7/}
}
TY  - JOUR
AU  - D. V. Kornev
AU  - N. Yu. Lukoyanov
TI  - On a minimax control problem for a positional functional under geometric and integral constraints on control actions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 87
EP  - 101
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a7/
LA  - ru
ID  - TIMM_2015_21_2_a7
ER  - 
%0 Journal Article
%A D. V. Kornev
%A N. Yu. Lukoyanov
%T On a minimax control problem for a positional functional under geometric and integral constraints on control actions
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 87-101
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a7/
%G ru
%F TIMM_2015_21_2_a7
D. V. Kornev; N. Yu. Lukoyanov. On a minimax control problem for a positional functional under geometric and integral constraints on control actions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 87-101. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a7/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 520 pp. | MR

[3] Krasovskii A.N., Krasovskii N.N., Control under lack of information, Birkhauser, Berlin etc., 1995, 322 pp. | MR

[4] Krasovskii N.N., Tretyakov V.E., “K zadache o presledovanii v sluchae ogranichenii na impulsy upravlyayuschikh sil”, Differents. uravneniya, 2:5 (1966), 587–599 | MR

[5] Nikolskii M.S., “Pryamoi metod v lineinykh differentsialnykh igrakh s obschimi integralnymi ogranicheniyami”, Differents. uravneniya, 8:6 (1972), 964–971

[6] Subbotina N.N., Subbotin A.I., “Alternativa dlya differentsialnoi igry sblizheniya-ukloneniya pri ogranicheniyakh na impulsy upravlenii igrokov”, Prikl. matematika i mekhanika, 39:3 (1975), 397–406 | MR | Zbl

[7] Krasovskii N.N., Tretyakov V.E., “Stokhasticheskii programmnyi sintez dlya pozitsionnoi differentsialnoi igry”, Dokl. AN SSSR, 259:1 (1981), 24–27 | MR

[8] Krasovskii A.N., “Postroenie smeshannykh strategii na osnove stokhasticheskikh programm”, Prikl. matematika i mekhanika, 51:2 (1987), 186–192 | MR

[9] Krasovskii N.N., Reshetova T.N., “O programmnom sinteze garantirovannogo upravleniya”, Problemy upravleniya i teoriya informatsii, 17:6 (1988), 333–343 | MR

[10] Krasovskii N.N., Lukoyanov N.Yu., “Zadacha konfliktnogo upravleniya s nasledstvennoi informatsiei”, Prikl. matematika i mekhanika, 60:6 (1996), 885–900 | MR

[11] Lukoyanov N.Yu., “K voprosu vychisleniya tseny differentsialnoi igry dlya pozitsionnogo funktsionala”, Prikl. matematika i mekhanika, 62:2 (1998), 188–198 | MR | Zbl

[12] Lukoyanov N.Yu., “O postroenii tseny pozitsionnoi differentsialnoi igry”, Differents. uravneniya, 37:1 (2001), 18–26 | MR | Zbl

[13] Lokshin M.D., “O differentsialnykh igrakh s integralnymi ogranicheniyami na upravlyayuschie vozdeistviya”, Differents. uravneniya, 28:11 (1992), 1952–1961 | MR | Zbl

[14] Lukoyanov N.Yu., “O zadache konfliktnogo upravleniya pri smeshannykh ogranicheniyakh na upravlyayuschie vozdeistviya”, Differents. uravneniya, 31:9 (1995), 1473–1482 | MR | Zbl

[15] Lukoyanov N.Yu., “K zadache konfliktnogo upravleniya pri smeshannykh ogranicheniyakh”, Prikl. matematika i mekhanika, 59:6 (1995), 955–964 | MR | Zbl

[16] Kornev D.V., “Ob optimizatsii garantii pri integralnykh ogranicheniyakh na upravlyayuschie vozdeistviya i neterminalnom pokazatele kachestva”, [Elektron. resurs], XII Vseros. soveschanie po problemam upravleniya - VSPU-2014, sb. dokl. (Moskva, 16-19 iyunya, 2014 g.), 2059–2070

[17] Gomoyunov M.I., Lukoyanov N.Yu., “Ob ustoichivosti odnoi protsedury resheniya zadachi upravleniya na minimaks pozitsionnogo funktsionala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 68–82 | MR

[18] Balashov M.V., “O $P$-svoistve vypuklykh kompaktov”, Mat. zametki, 71:3 (2002), 323–333 | DOI | MR | Zbl

[19] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR

[20] Kornev D.V., “O chislennom reshenii pozitsionnykh differentsialnykh igr s neterminalnoi platoi”, Avtomatika i telemekhanika, 2012, no. 11, 60–75 | MR | Zbl