Approximation of the set of trajectories of a control system described by the Urysohn integral equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 59-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The approximation of the set of trajectories of a control system described by the Urysohn integral equation is considered. The closed ball of the space $L_p([a,b];\mathbb{R}^m)$ $(p>1)$ of radius $r$ centered at the origin is chosen as the set of admissible controls. This set is replaced by a set of control functions, which consists of a finite number of controls and generates a finite number of trajectories. An accuracy estimate is obtained for the Hausdorff distance between the set of trajectories and the set consisting of a finite number of trajectories.
Keywords: Urysohn integral equation, control system, integral constraint, set of trajectories, approximation.
@article{TIMM_2015_21_2_a5,
     author = {N. Huseyin and A. Huseyin and Kh. G. Guseinov},
     title = {Approximation of the set of trajectories of a control system described by the {Urysohn} integral equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {59--72},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a5/}
}
TY  - JOUR
AU  - N. Huseyin
AU  - A. Huseyin
AU  - Kh. G. Guseinov
TI  - Approximation of the set of trajectories of a control system described by the Urysohn integral equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 59
EP  - 72
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a5/
LA  - ru
ID  - TIMM_2015_21_2_a5
ER  - 
%0 Journal Article
%A N. Huseyin
%A A. Huseyin
%A Kh. G. Guseinov
%T Approximation of the set of trajectories of a control system described by the Urysohn integral equation
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 59-72
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a5/
%G ru
%F TIMM_2015_21_2_a5
N. Huseyin; A. Huseyin; Kh. G. Guseinov. Approximation of the set of trajectories of a control system described by the Urysohn integral equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 59-72. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a5/

[1] Angell T.S., George R.K, Sharma J.P., “Controllability of Urysohn integral inclusions of Volterra type”, Electron. J. Diff. Eq., 2010, no. 79, 1–12 | MR

[2] Appell J., Kalitvin A.S., Zabreiko P.P., “Boundary value problems for integro-differential equations of Barbashin type”, J. Integr. Equ. Appl., 6:1 (1994), 1–30 | DOI | MR | Zbl

[3] Balder E.J., “On existence problems for the optimal control of certain nonlinear integral equations of Urysohn type”, J. Optim. Theory Appl., 42:3 (1984), 447–465 | DOI | MR | Zbl

[4] Bennati M.L., “An existence theorem for optimal controls of systems defined by Urysohn integral equations”, Ann. Mat. Pura Appl., 121:4 (1979), 187–197 | DOI | MR | Zbl

[5] Brauer F., “On a nonlinear integral equation for population growth problems”, SIAM J. Math. Anal., 6 (1975), 312–317 | DOI | MR | Zbl

[6] Browder F.E., “Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type”, Contributions to nonlinear functional analysis, Proc. Sympos., Acad. Press, New York, 1971, 425–500 | MR

[7] Huseyin A., “On the approximation of the set of trajectories of control system described by a Volterra integral equation”, Nonlin. Anal. Model. Contr., 19:2 (2014), 199–208 | MR | Zbl

[8] Huseyin A., Huseyin N., “Precompactness of the set of trajectories of the controllable system described by a nonlinear Volterra integral equation”, Math. Model. Anal., 17:5 (2012), 686–695 | DOI | MR | Zbl

[9] Krasnoselskii M.A., Krein S.G., “O printsipe usredneniya v nelineinoi mekhanike”, Uspekhi mat. nauk, 10:10 (65) (1955), 147–152 | MR

[10] Polyanin A.D., Manzhirov A.V., Handbook of integral equations, CRC Press, Boca Raton, 1998, 787 pp. | MR | Zbl

[11] Uryson P.S., “Ob odnom tipe nelineinykh integralnykh uravnenii”, Mat. cb., 31:2 (1923), 236–255

[12] Vainikko G., Zolk I., “Fast spline quasicollocation solvers of integral equations”, Math. Model. Anal., 12:4 (2007), 515–538 | DOI | MR | Zbl

[13] Chentsov A.G., “Approximative realization of integral constraints and generalized constructions in the class of vector finitely additive measures”, Proc. Steklov Inst. Math., 2002, Suppl. 2, S10-S60 | MR | Zbl

[14] Conti R., Problemi di Controllo e di Controllo Ottimale, UTET, Torino, 1974, 239 pp.

[15] Guseinov Kh.G., Neznakhin A.A., Ushakov V.N., “Approximate construction of reachable sets of control systems with integral constraints on the controls”, J. Appl. Math. Mech., 63:4 (1999), 557–567 | DOI | MR

[16] Guseinov Kh.G., “Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls”, Nonlinear Anal., 71:1–2 (2009), 622–645 | DOI | MR | Zbl

[17] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968, 476 pp. | MR

[18] Krasovskii N.N., Subbotin A.I., Ushakov V.N., “Minimaksnaya differentsialnaya igra”, Dokl. AN SSSR, 206:2 (1972), 277-280 | MR

[19] Subbotina N.N., Subbotin A.I., “Alternative for the encounter-evasion differential game with constraints on the momenta of the players controls”, J. Appl. Math. Mech., 39:3 (1975), 376–385 | DOI | MR | Zbl

[20] Subbotin A.I., Ushakov V.N., “Alternative for an encounter-evasion differential game with integral constraints on the players controls”, J. Appl. Math. Mech., 39:3 (1975), 367–375 | DOI | MR | Zbl

[21] Ushakov V.N., “Extremal strategies in differential games with integral constraints”, J. Appl. Math. Mech., 36:1 (1972), 12–19 | DOI | MR | Zbl

[22] Ukhobotov V.I., Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, Izd-vo ChelGU, Chelyabinsk, 2005, 124 pp.

[23] Vdovina O.I., Sesekin A.N., “Numerical construction of attainability domains for systems with impulse control”, Proc. Steklov Inst. Math., 2005, Suppl. 1, S246-S255 | MR | Zbl