@article{TIMM_2015_21_2_a5,
author = {N. Huseyin and A. Huseyin and Kh. G. Guseinov},
title = {Approximation of the set of trajectories of a control system described by the {Urysohn} integral equation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {59--72},
year = {2015},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a5/}
}
TY - JOUR AU - N. Huseyin AU - A. Huseyin AU - Kh. G. Guseinov TI - Approximation of the set of trajectories of a control system described by the Urysohn integral equation JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 59 EP - 72 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a5/ LA - ru ID - TIMM_2015_21_2_a5 ER -
%0 Journal Article %A N. Huseyin %A A. Huseyin %A Kh. G. Guseinov %T Approximation of the set of trajectories of a control system described by the Urysohn integral equation %J Trudy Instituta matematiki i mehaniki %D 2015 %P 59-72 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a5/ %G ru %F TIMM_2015_21_2_a5
N. Huseyin; A. Huseyin; Kh. G. Guseinov. Approximation of the set of trajectories of a control system described by the Urysohn integral equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 59-72. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a5/
[1] Angell T.S., George R.K, Sharma J.P., “Controllability of Urysohn integral inclusions of Volterra type”, Electron. J. Diff. Eq., 2010, no. 79, 1–12 | MR
[2] Appell J., Kalitvin A.S., Zabreiko P.P., “Boundary value problems for integro-differential equations of Barbashin type”, J. Integr. Equ. Appl., 6:1 (1994), 1–30 | DOI | MR | Zbl
[3] Balder E.J., “On existence problems for the optimal control of certain nonlinear integral equations of Urysohn type”, J. Optim. Theory Appl., 42:3 (1984), 447–465 | DOI | MR | Zbl
[4] Bennati M.L., “An existence theorem for optimal controls of systems defined by Urysohn integral equations”, Ann. Mat. Pura Appl., 121:4 (1979), 187–197 | DOI | MR | Zbl
[5] Brauer F., “On a nonlinear integral equation for population growth problems”, SIAM J. Math. Anal., 6 (1975), 312–317 | DOI | MR | Zbl
[6] Browder F.E., “Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type”, Contributions to nonlinear functional analysis, Proc. Sympos., Acad. Press, New York, 1971, 425–500 | MR
[7] Huseyin A., “On the approximation of the set of trajectories of control system described by a Volterra integral equation”, Nonlin. Anal. Model. Contr., 19:2 (2014), 199–208 | MR | Zbl
[8] Huseyin A., Huseyin N., “Precompactness of the set of trajectories of the controllable system described by a nonlinear Volterra integral equation”, Math. Model. Anal., 17:5 (2012), 686–695 | DOI | MR | Zbl
[9] Krasnoselskii M.A., Krein S.G., “O printsipe usredneniya v nelineinoi mekhanike”, Uspekhi mat. nauk, 10:10 (65) (1955), 147–152 | MR
[10] Polyanin A.D., Manzhirov A.V., Handbook of integral equations, CRC Press, Boca Raton, 1998, 787 pp. | MR | Zbl
[11] Uryson P.S., “Ob odnom tipe nelineinykh integralnykh uravnenii”, Mat. cb., 31:2 (1923), 236–255
[12] Vainikko G., Zolk I., “Fast spline quasicollocation solvers of integral equations”, Math. Model. Anal., 12:4 (2007), 515–538 | DOI | MR | Zbl
[13] Chentsov A.G., “Approximative realization of integral constraints and generalized constructions in the class of vector finitely additive measures”, Proc. Steklov Inst. Math., 2002, Suppl. 2, S10-S60 | MR | Zbl
[14] Conti R., Problemi di Controllo e di Controllo Ottimale, UTET, Torino, 1974, 239 pp.
[15] Guseinov Kh.G., Neznakhin A.A., Ushakov V.N., “Approximate construction of reachable sets of control systems with integral constraints on the controls”, J. Appl. Math. Mech., 63:4 (1999), 557–567 | DOI | MR
[16] Guseinov Kh.G., “Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls”, Nonlinear Anal., 71:1–2 (2009), 622–645 | DOI | MR | Zbl
[17] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968, 476 pp. | MR
[18] Krasovskii N.N., Subbotin A.I., Ushakov V.N., “Minimaksnaya differentsialnaya igra”, Dokl. AN SSSR, 206:2 (1972), 277-280 | MR
[19] Subbotina N.N., Subbotin A.I., “Alternative for the encounter-evasion differential game with constraints on the momenta of the players controls”, J. Appl. Math. Mech., 39:3 (1975), 376–385 | DOI | MR | Zbl
[20] Subbotin A.I., Ushakov V.N., “Alternative for an encounter-evasion differential game with integral constraints on the players controls”, J. Appl. Math. Mech., 39:3 (1975), 367–375 | DOI | MR | Zbl
[21] Ushakov V.N., “Extremal strategies in differential games with integral constraints”, J. Appl. Math. Mech., 36:1 (1972), 12–19 | DOI | MR | Zbl
[22] Ukhobotov V.I., Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, Izd-vo ChelGU, Chelyabinsk, 2005, 124 pp.
[23] Vdovina O.I., Sesekin A.N., “Numerical construction of attainability domains for systems with impulse control”, Proc. Steklov Inst. Math., 2005, Suppl. 1, S246-S255 | MR | Zbl