@article{TIMM_2015_21_2_a4,
author = {M. I. Gusev},
title = {On the attainability problem under state constraints with piecewise smooth boundary},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {50--58},
year = {2015},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a4/}
}
M. I. Gusev. On the attainability problem under state constraints with piecewise smooth boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 50-58. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a4/
[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR
[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR
[3] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 319 pp. | MR
[4] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR
[5] Kurzhanski A.B., Valyi I., Ellipsoidal calculus for estimation and control, SCFA, Birkhauser, Boston, 1997, 321 pp. | MR | Zbl
[6] Lotov A.V., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinykh upravlyaemykh sistem s fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 15:1 (1975), 67–78 | MR | Zbl
[7] Matviichuk A.R., Ushakov V.N., “O postroenii razreshayuschikh upravlenii v zadachakh upravleniya s fazovymi ogranicheniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 1, 5–20 | MR
[8] Kurzhanski A.B., Mitchell I.M., Varaiya P., “Optimization techniques for state-constrained control and obstacle problems”, J. Optim. Theory Appl., 128:3 (2006), 499–521 | DOI | MR | Zbl
[9] Baier R., Chahma I. A., Lempio F., “Stability and convergence of Euler's method for state-constrained differential inclusions”, SIAM J. Optim., 18:3 (2007), 1004–1026 | DOI | MR | Zbl
[10] Bonneuil N., “Computing reachable sets as capture-viability kernels in reverse time”, Appl. Math., 3:11 (2012), 1593–1597 | DOI
[11] Kostousova E.K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychislitelnye tekhnologii, 3:2 (1998), 11–20 | MR | Zbl
[12] Gusev M.I., “Vneshnie otsenki mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Avtomatika i telemekhanika, 2012, no. 3, 39–51 | Zbl
[13] Kurzhanskii A.B., Filippova T.F., “Ob opisanii mnozhestva vyzhivayuschikh traektorii differentsialnogo vklyucheniya”, Dokl. AN SSSR, 289:1 (1986), 38–41 | MR
[14] Kurzhanskii A.B., Filippova T.F., “Ob opisanii puchka vyzhivayuschikh traektorii upravlyaemoi sistemy”, Differents. uravneniya, 23:8 (1987), 1303–1315 | MR
[15] Gusev M.I., “O metode shtrafnykh funktsii v zadache postroeniya mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 81–86
[16] Gusev M.I., “Vnutrennie approksimatsii mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 73–88 | MR
[17] Forcellini F., Rampazzo F., “On non-convex differential inclusions whose state is constrained in the closure of an open set”, J. Differential Integral Equations, 12:4 (1999), 471–497 | MR | Zbl
[18] Frankowska H., Vinter R.B., “Existence of neighboring feasible trajectories: Applications to dynamic programming for state-constrained optimal control problems”, J. Optim. Theory Appl, 104:1 (2000), 21–40 | DOI | MR | Zbl
[19] Stern R.J., “Characterization of the state constrained minimal time function”, SIAM J. Control Optim, 43:2 (2004), 697–707 | DOI | MR | Zbl
[20] Bettiol P., Frankowska H., Vinter R.B., “$L^{\infty}$ estimates on trajectories confined to a closed subset”, J. Differential Equations, 252:2 (2012), 1912–1933 | DOI | MR | Zbl
[21] Bressan A., Facchi G., “Trajectories of differential inclusions with State Constraints”, J. Differential Equations, 250:2 (2011), 2267–2281 | DOI | MR | Zbl
[22] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona - Yakobi, Nauka, M., 1991, 216 pp. | MR
[23] Lions P. L., Souganidis P. E., “Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaacs's equations”, SIAM J. Control Optim, 23:4 (1985), 566–583 | DOI | MR | Zbl
[24] Gusev M.I., “O snyatii fazovykh ogranichenii pri postroenii mnozhestv dostizhimosti”, Tr. In-ta matematiki i mekhaniki URO RAN, 20:4 (2014), 106–115
[25] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M, 1974, 480 pp. | MR
[26] Lineinye neravenstva i smezhnye voprosy, eds. G.U. Kun, A.U. Takker, Izd-vo inostr. lit., M., 1959, 469 pp.