On the attainability problem under state constraints with piecewise smooth boundary
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 50-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the problem of approximating reachable sets for a nonlinear control system with state constraints given as a solution set of a finite system of nonlinear inequalities. Each of these inequalities is given as a level set of a smooth function, but their intersection may have nonsmooth boundary. We study a procedure of eliminating the state constraints based on the introduction of an auxiliary system without constraints such that the right-hand sides of its equations depend on a small parameter. For state constraints with smooth boundary, it was shown earlier that the reachable set of the original system can be approximated in the Hausdorff metric by the reachable sets of the auxiliary control system as the small parameter tends to zero. In the present paper, these results are extended to the considered class of systems with piecewise smooth boundary of the state constraints.
Keywords: reachable set, state constraints, penalty function, approximation, Hausdorff metric.
@article{TIMM_2015_21_2_a4,
     author = {M. I. Gusev},
     title = {On the attainability problem under state constraints with piecewise smooth boundary},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {50--58},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a4/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - On the attainability problem under state constraints with piecewise smooth boundary
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 50
EP  - 58
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a4/
LA  - ru
ID  - TIMM_2015_21_2_a4
ER  - 
%0 Journal Article
%A M. I. Gusev
%T On the attainability problem under state constraints with piecewise smooth boundary
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 50-58
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a4/
%G ru
%F TIMM_2015_21_2_a4
M. I. Gusev. On the attainability problem under state constraints with piecewise smooth boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 50-58. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a4/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR

[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR

[3] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 319 pp. | MR

[4] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[5] Kurzhanski A.B., Valyi I., Ellipsoidal calculus for estimation and control, SCFA, Birkhauser, Boston, 1997, 321 pp. | MR | Zbl

[6] Lotov A.V., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinykh upravlyaemykh sistem s fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 15:1 (1975), 67–78 | MR | Zbl

[7] Matviichuk A.R., Ushakov V.N., “O postroenii razreshayuschikh upravlenii v zadachakh upravleniya s fazovymi ogranicheniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 1, 5–20 | MR

[8] Kurzhanski A.B., Mitchell I.M., Varaiya P., “Optimization techniques for state-constrained control and obstacle problems”, J. Optim. Theory Appl., 128:3 (2006), 499–521 | DOI | MR | Zbl

[9] Baier R., Chahma I. A., Lempio F., “Stability and convergence of Euler's method for state-constrained differential inclusions”, SIAM J. Optim., 18:3 (2007), 1004–1026 | DOI | MR | Zbl

[10] Bonneuil N., “Computing reachable sets as capture-viability kernels in reverse time”, Appl. Math., 3:11 (2012), 1593–1597 | DOI

[11] Kostousova E.K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychislitelnye tekhnologii, 3:2 (1998), 11–20 | MR | Zbl

[12] Gusev M.I., “Vneshnie otsenki mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Avtomatika i telemekhanika, 2012, no. 3, 39–51 | Zbl

[13] Kurzhanskii A.B., Filippova T.F., “Ob opisanii mnozhestva vyzhivayuschikh traektorii differentsialnogo vklyucheniya”, Dokl. AN SSSR, 289:1 (1986), 38–41 | MR

[14] Kurzhanskii A.B., Filippova T.F., “Ob opisanii puchka vyzhivayuschikh traektorii upravlyaemoi sistemy”, Differents. uravneniya, 23:8 (1987), 1303–1315 | MR

[15] Gusev M.I., “O metode shtrafnykh funktsii v zadache postroeniya mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 81–86

[16] Gusev M.I., “Vnutrennie approksimatsii mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 73–88 | MR

[17] Forcellini F., Rampazzo F., “On non-convex differential inclusions whose state is constrained in the closure of an open set”, J. Differential Integral Equations, 12:4 (1999), 471–497 | MR | Zbl

[18] Frankowska H., Vinter R.B., “Existence of neighboring feasible trajectories: Applications to dynamic programming for state-constrained optimal control problems”, J. Optim. Theory Appl, 104:1 (2000), 21–40 | DOI | MR | Zbl

[19] Stern R.J., “Characterization of the state constrained minimal time function”, SIAM J. Control Optim, 43:2 (2004), 697–707 | DOI | MR | Zbl

[20] Bettiol P., Frankowska H., Vinter R.B., “$L^{\infty}$ estimates on trajectories confined to a closed subset”, J. Differential Equations, 252:2 (2012), 1912–1933 | DOI | MR | Zbl

[21] Bressan A., Facchi G., “Trajectories of differential inclusions with State Constraints”, J. Differential Equations, 250:2 (2011), 2267–2281 | DOI | MR | Zbl

[22] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona - Yakobi, Nauka, M., 1991, 216 pp. | MR

[23] Lions P. L., Souganidis P. E., “Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaacs's equations”, SIAM J. Control Optim, 23:4 (1985), 566–583 | DOI | MR | Zbl

[24] Gusev M.I., “O snyatii fazovykh ogranichenii pri postroenii mnozhestv dostizhimosti”, Tr. In-ta matematiki i mekhaniki URO RAN, 20:4 (2014), 106–115

[25] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M, 1974, 480 pp. | MR

[26] Lineinye neravenstva i smezhnye voprosy, eds. G.U. Kun, A.U. Takker, Izd-vo inostr. lit., M., 1959, 469 pp.