On one application of convex optimization to stability of linear systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 320-328
Voir la notice de l'article provenant de la source Math-Net.Ru
One of the most important problem of control theory is control of switched systems. This problem is related to the common quadratic Lyapunov function problem and one of the way to solve it is LMI (Linear Matrix Inequalities) approach. On the other hand this approach requires a huge number of parameters and is not effective when the number of subsystems and matrix dimensions increase. In this paper we give alternative methods for testing stability of switched systems. These methods are based on the convexity property of the maximum eigenvalue function of symmetric matrices.
@article{TIMM_2015_21_2_a25,
author = {V. Dzhafarov and T. Buyukkorouglu and S. Yilmaz},
title = {On one application of convex optimization to stability of linear systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {320--328},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a25/}
}
TY - JOUR AU - V. Dzhafarov AU - T. Buyukkorouglu AU - S. Yilmaz TI - On one application of convex optimization to stability of linear systems JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 320 EP - 328 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a25/ LA - en ID - TIMM_2015_21_2_a25 ER -
%0 Journal Article %A V. Dzhafarov %A T. Buyukkorouglu %A S. Yilmaz %T On one application of convex optimization to stability of linear systems %J Trudy Instituta matematiki i mehaniki %D 2015 %P 320-328 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a25/ %G en %F TIMM_2015_21_2_a25
V. Dzhafarov; T. Buyukkorouglu; S. Yilmaz. On one application of convex optimization to stability of linear systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 320-328. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a25/