On one application of convex optimization to stability of linear systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 320-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One of the most important problem of control theory is control of switched systems. This problem is related to the common quadratic Lyapunov function problem and one of the way to solve it is LMI (Linear Matrix Inequalities) approach. On the other hand this approach requires a huge number of parameters and is not effective when the number of subsystems and matrix dimensions increase. In this paper we give alternative methods for testing stability of switched systems. These methods are based on the convexity property of the maximum eigenvalue function of symmetric matrices.
@article{TIMM_2015_21_2_a25,
     author = {V. Dzhafarov and T. Buyukkorouglu and S. Yilmaz},
     title = {On one application of convex optimization to stability of linear systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {320--328},
     year = {2015},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a25/}
}
TY  - JOUR
AU  - V. Dzhafarov
AU  - T. Buyukkorouglu
AU  - S. Yilmaz
TI  - On one application of convex optimization to stability of linear systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 320
EP  - 328
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a25/
LA  - en
ID  - TIMM_2015_21_2_a25
ER  - 
%0 Journal Article
%A V. Dzhafarov
%A T. Buyukkorouglu
%A S. Yilmaz
%T On one application of convex optimization to stability of linear systems
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 320-328
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a25/
%G en
%F TIMM_2015_21_2_a25
V. Dzhafarov; T. Buyukkorouglu; S. Yilmaz. On one application of convex optimization to stability of linear systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 320-328. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a25/

[1] Barmish B.R., New tools for robustness of linear systems, Macmillan, New York, 1994 | Zbl

[2] Liberzon D., Switching in systems and control, Birkhauser, Boston, 2003, 233 pp. | MR | Zbl

[3] Bhattacharyya S.P., Chapellat H.and Keel L.H., Robust control: The parametric approach, Prentice-Hall, N.J., 1995, 672 pp. | Zbl

[4] Liberzon D. and Tempo R., “Common Lyapunov functions and gradient algorithms”, IEEE Trans. Automat. Control, 49:6 (2004), 990–994 | DOI | MR

[5] Shorten R.N. and Narendra K.S., “Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time-invariant systems”, Int. J. Adapt. Control Signal Process, 16:10 (2002), 709–728 | DOI | Zbl

[6] Narendra K.S. and Balakrishnan J.A., “A common Lyapunov function for stable lti systems with commuting A-matrices”, IEEE Trans. Automat. Control, 39:12 (1994), 2469–2471 | DOI | MR | Zbl

[7] Shorten R., Narendra K. and Mason O., “A result on common quadratic Lyapunov functions”, IEEE Trans. Automat. Control, 48:1 (2003), 110–113 | DOI | MR

[8] Buyukkorouglu T., Esen O. and Dzhafarov V., “Common Lyapunov functions for some special classes of stable systems”, IEEE Trans. Automat. Control, 56:8 (2011), 1963–1967 | DOI | MR

[9] Lin H. and Antsaklis P.J., “Stability and stabilizability of switched linear systems: a survey of recent results”, IEEE Trans. Automat. Control, 54:2 (2009), 308–322 | DOI | MR

[10] Horn R.A. and Johnson C.R., Matrix analysis, Cambridge University Press, Cambridge, 1985, 561 pp. | MR | Zbl

[11] Dantzig G.B. and Thapa M.N., Linear programming: Theory and extensions, Springer, New York, 2003, 448 pp. | MR

[12] Athans M., “The matrix minimum principle”, Information and control, 11 (1967), 592–606 | DOI | MR | Zbl