Examples of computed viability kernels
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 306-319

Voir la notice de l'article provenant de la source Math-Net.Ru

Conflict control systems with state constraints are under consideration. A numerical method of constructing viability kernels, i.e the largest subsets of state constraints where the system trajectories can be confined, is applied to several nontrivial examples. The method can be interpreted as the approximate construction of the Hausdorff limit of sets generated by a backward procedure based on differential games theory essentially developed in works by N.N. Krasovskii and A.I. Subbotin. Numerically, the method is implemented in the framework of computing level sets of approximate solutions to an appropriate Hamilton-Jacobi equation. The main objective of the paper is the demonstration of nontrivial examples of computing viability kernels.
@article{TIMM_2015_21_2_a24,
     author = {N. D. Botkin and V. L. Turova},
     title = {Examples of computed viability kernels},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {306--319},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a24/}
}
TY  - JOUR
AU  - N. D. Botkin
AU  - V. L. Turova
TI  - Examples of computed viability kernels
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 306
EP  - 319
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a24/
LA  - en
ID  - TIMM_2015_21_2_a24
ER  - 
%0 Journal Article
%A N. D. Botkin
%A V. L. Turova
%T Examples of computed viability kernels
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 306-319
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a24/
%G en
%F TIMM_2015_21_2_a24
N. D. Botkin; V. L. Turova. Examples of computed viability kernels. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 306-319. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a24/