Examples of computed viability kernels
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 306-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Conflict control systems with state constraints are under consideration. A numerical method of constructing viability kernels, i.e the largest subsets of state constraints where the system trajectories can be confined, is applied to several nontrivial examples. The method can be interpreted as the approximate construction of the Hausdorff limit of sets generated by a backward procedure based on differential games theory essentially developed in works by N.N. Krasovskii and A.I. Subbotin. Numerically, the method is implemented in the framework of computing level sets of approximate solutions to an appropriate Hamilton-Jacobi equation. The main objective of the paper is the demonstration of nontrivial examples of computing viability kernels.
@article{TIMM_2015_21_2_a24,
     author = {N. D. Botkin and V. L. Turova},
     title = {Examples of computed viability kernels},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {306--319},
     year = {2015},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a24/}
}
TY  - JOUR
AU  - N. D. Botkin
AU  - V. L. Turova
TI  - Examples of computed viability kernels
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 306
EP  - 319
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a24/
LA  - en
ID  - TIMM_2015_21_2_a24
ER  - 
%0 Journal Article
%A N. D. Botkin
%A V. L. Turova
%T Examples of computed viability kernels
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 306-319
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a24/
%G en
%F TIMM_2015_21_2_a24
N. D. Botkin; V. L. Turova. Examples of computed viability kernels. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 306-319. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a24/

[1] Aubin J.P., “A survey of viability theory”, SIAM J. Control Optim., 28:4 (1990), 749–788 | DOI | MR | Zbl

[2] Krasovskii N.N. and Subbotin A.I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 517 pp. | MR

[3] Quincampoix M., “Frontieres de domaines d'invariance et de viabilite pour des inclusions differentielles avec contraintes”, Comptes Rendus de l'Acadmie des Sciences - Series I - Mathematics, 311 (1990), 411–416 | MR | Zbl

[4] Aubin J.-P., Bayen A.M. and Saint-Pierre P., Viability theory: New directions, Springer-Verlag, Berlin; Heidelberg, 2011, 830 pp. | MR | Zbl

[5] Neznakhin A.A. and Ushakov V.N., “A discrete method for constructing an approximate viability kernel of a differential inclusion”, Comput. Math. Math. Phys., 41:6 (2001), 846–859 | MR | Zbl

[6] Botkin N.D., “Asymptotic behavior of solution in differential games. Viability domains of differential inclusions”, Dokl. Akad. Nauk, 325:1 (1992), 16–19 | MR | Zbl

[7] Botkin N.D., Construction of viable sets for autonomous controlled systems, Preprint No430.(Preprint Ser. SPP Anwendungsbezogene Optimierung und Steuerung (Applied optimization and control)), University of Wurzburg, Wurzburg, 1993, 14 pp.

[8] Botkin N.D. and Turova V.L., “Numerical construction of viable sets for autonomous conflict control systems”, Mathematics, 2 (2014), 68–82 | DOI | Zbl

[9] Pontryagin L.S., “Linear differential games. 2”, Soviet Math. Dokl., 8 (1967), 910–912 | Zbl

[10] Barles G. and Souganidis P.E., “Convergence of approximation schemes for fully nonlinear second order equations”, Asymptot. Anal., 4:3 (1991), 271–283 | MR | Zbl

[11] Botkin N.D., Hoffmann K.-H., Mayer N. and Turova V.L., “Approximation schemes for solving disturbed control problems with non-terminal time and state constraints”, Analysis, 31:4 (2011), 355–379 | DOI | MR | Zbl

[12] Bardi M. and Goatin P., “Invariant sets for controlled degenerate diffusions: a viscosity solutions approach”, Stochastic Analysis, Control, Optimization and Applications, A Volume in Honor of W.H. Fleming, Systems Control Found. Appl., eds. W.H. Fleming, W.M. McEneaney, G.G. Yin, and Q. Zhang, Birkhauser, Boston, 1999, 191–208 | MR | Zbl

[13] MoVner B. and Reif U., “Error bounds for polynomial tensor product interpolation”, Computing, 86:2–3 (2009), 185–197 | DOI | MR

[14] Botkin N.D., Hoffmann K.-H. and Turova V.L., “Stable numerical schemes for solving Hamilton-Jacobi-Bellman-Isaacs equations”, SIAM J. Sci. Comp., 33:2 (2011), 992–1007 | DOI | MR | Zbl

[15] Subbotin A.I. and Chentsov A.G., Optimization of guaranteed result in control problems, (in Russian), Nauka, Moscow, 1981, 288 pp. | MR

[16] Subbotina N.N. and Tokmantsev T.B., “On the efficiency of optimal grid synthesis in optimal control problems with fixed terminal time”, Differ. Equ., 45:11 (2009), 1686–1697 | DOI | MR | Zbl

[17] Botkin N.D. and Ryazantseva E.A., “Structure of viability kernels for some linear differential games”, J. Optim. Theory Appl., 147:1 (2011), 42–57 | DOI | MR

[18] Isaacs R., Differential games, John Wiley, New York, 1965, 408 pp. | MR | Zbl

[19] Cardaliaguet P., Quincampoix M. and Saint-Pierre P., “Set valued numerical analysis for optimal control and differential games”, Stochastic and Differential Games: Theory and Numerical Methods, Ann. Internat. Soc. Dynam. Games, 4, eds. M. Bardi, T. Parthasarathy, and T.E.S. Raghavan, Birkhauser, Boston, 1999, 177–247 | MR | Zbl

[20] Patsko V.S. and Turova V.L., “Level sets of the value function in differential games with the homicidal chauffeur dynamics”, Game Theory Review, 3:1 (2001), 67–112 | DOI | MR | Zbl