@article{TIMM_2015_21_2_a24,
author = {N. D. Botkin and V. L. Turova},
title = {Examples of computed viability kernels},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {306--319},
year = {2015},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a24/}
}
N. D. Botkin; V. L. Turova. Examples of computed viability kernels. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 306-319. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a24/
[1] Aubin J.P., “A survey of viability theory”, SIAM J. Control Optim., 28:4 (1990), 749–788 | DOI | MR | Zbl
[2] Krasovskii N.N. and Subbotin A.I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 517 pp. | MR
[3] Quincampoix M., “Frontieres de domaines d'invariance et de viabilite pour des inclusions differentielles avec contraintes”, Comptes Rendus de l'Acadmie des Sciences - Series I - Mathematics, 311 (1990), 411–416 | MR | Zbl
[4] Aubin J.-P., Bayen A.M. and Saint-Pierre P., Viability theory: New directions, Springer-Verlag, Berlin; Heidelberg, 2011, 830 pp. | MR | Zbl
[5] Neznakhin A.A. and Ushakov V.N., “A discrete method for constructing an approximate viability kernel of a differential inclusion”, Comput. Math. Math. Phys., 41:6 (2001), 846–859 | MR | Zbl
[6] Botkin N.D., “Asymptotic behavior of solution in differential games. Viability domains of differential inclusions”, Dokl. Akad. Nauk, 325:1 (1992), 16–19 | MR | Zbl
[7] Botkin N.D., Construction of viable sets for autonomous controlled systems, Preprint No430.(Preprint Ser. SPP Anwendungsbezogene Optimierung und Steuerung (Applied optimization and control)), University of Wurzburg, Wurzburg, 1993, 14 pp.
[8] Botkin N.D. and Turova V.L., “Numerical construction of viable sets for autonomous conflict control systems”, Mathematics, 2 (2014), 68–82 | DOI | Zbl
[9] Pontryagin L.S., “Linear differential games. 2”, Soviet Math. Dokl., 8 (1967), 910–912 | Zbl
[10] Barles G. and Souganidis P.E., “Convergence of approximation schemes for fully nonlinear second order equations”, Asymptot. Anal., 4:3 (1991), 271–283 | MR | Zbl
[11] Botkin N.D., Hoffmann K.-H., Mayer N. and Turova V.L., “Approximation schemes for solving disturbed control problems with non-terminal time and state constraints”, Analysis, 31:4 (2011), 355–379 | DOI | MR | Zbl
[12] Bardi M. and Goatin P., “Invariant sets for controlled degenerate diffusions: a viscosity solutions approach”, Stochastic Analysis, Control, Optimization and Applications, A Volume in Honor of W.H. Fleming, Systems Control Found. Appl., eds. W.H. Fleming, W.M. McEneaney, G.G. Yin, and Q. Zhang, Birkhauser, Boston, 1999, 191–208 | MR | Zbl
[13] MoVner B. and Reif U., “Error bounds for polynomial tensor product interpolation”, Computing, 86:2–3 (2009), 185–197 | DOI | MR
[14] Botkin N.D., Hoffmann K.-H. and Turova V.L., “Stable numerical schemes for solving Hamilton-Jacobi-Bellman-Isaacs equations”, SIAM J. Sci. Comp., 33:2 (2011), 992–1007 | DOI | MR | Zbl
[15] Subbotin A.I. and Chentsov A.G., Optimization of guaranteed result in control problems, (in Russian), Nauka, Moscow, 1981, 288 pp. | MR
[16] Subbotina N.N. and Tokmantsev T.B., “On the efficiency of optimal grid synthesis in optimal control problems with fixed terminal time”, Differ. Equ., 45:11 (2009), 1686–1697 | DOI | MR | Zbl
[17] Botkin N.D. and Ryazantseva E.A., “Structure of viability kernels for some linear differential games”, J. Optim. Theory Appl., 147:1 (2011), 42–57 | DOI | MR
[18] Isaacs R., Differential games, John Wiley, New York, 1965, 408 pp. | MR | Zbl
[19] Cardaliaguet P., Quincampoix M. and Saint-Pierre P., “Set valued numerical analysis for optimal control and differential games”, Stochastic and Differential Games: Theory and Numerical Methods, Ann. Internat. Soc. Dynam. Games, 4, eds. M. Bardi, T. Parthasarathy, and T.E.S. Raghavan, Birkhauser, Boston, 1999, 177–247 | MR | Zbl
[20] Patsko V.S. and Turova V.L., “Level sets of the value function in differential games with the homicidal chauffeur dynamics”, Game Theory Review, 3:1 (2001), 67–112 | DOI | MR | Zbl