@article{TIMM_2015_21_2_a23,
author = {A. G. Chentsov},
title = {An abstract reachability problem: {\textquotedblleft}purely asymptotic{\textquotedblright} version},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {289--305},
year = {2015},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a23/}
}
A. G. Chentsov. An abstract reachability problem: “purely asymptotic” version. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 289-305. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a23/
[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR
[2] Daffin R.Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, IL, M., 1959, 263–267
[3] Golshtein E.G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp. | MR
[4] Skvortsova A.V., Chentsov A.G., “O postroenii asimptoticheskogo analoga puchka traektorii lineinoi sistemy s odnoimpulsnym upravleniem”, Differents. uravneniya, 40:12 (2004), 1645–1657 | MR | Zbl
[5] Chentsov A.G., Baklanov A.P., “Ob odnoi zadache, svyazannoi s asimptoticheskoi dostizhimostyu v srednem”, Dokl. RAN, 459:6 (2014), 672–676 | DOI
[6] Aleksandryan R.A., Mirzakhanyan E.A., Obschaya topologiya, ucheb. posobie dlya vuzov, Vysshaya shkola, M., 1979, 336 pp.
[7] Chentsov A.G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht; Boston; London, 1997, 322 pp. | MR | Zbl
[8] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1970, 488 pp. | MR
[9] Gamkrelidze R.V., Osnovy optimalnogo upravleniya, Izd-vo Tbilis. un-ta, Tbilisi, 1975, 230 pp. | MR
[10] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[11] Krasovskii N.N., Subbotin A.I., “Alternativa dlya igrovoi zadachi sblizheniya”, Prikl. matematika i mekhanika, 34:6 (1970), 1005–1022 | MR
[12] Arkhangelskii A.V., “Kompaktnost”, Itogi nauki i tekhniki (Sovremennye problemy matematiki. Fundamentalnye napravleniya), 50, 1989, 7–128 | MR
[13] Terpe F., Flaksmaier Yu., “O nekotorykh prilozheniyakh teorii rasshirenii topologicheskikh prostranstv i teorii mery”, Uspekhi mat. nauk, 32:5 (1977), 125–162 | MR | Zbl
[14] Chentsov A.G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 293–311
[15] Chentsov A.G., “Mnozhestva prityazheniya v abstraktnykh zadachakh o dostizhimosti: ekvivalentnye predstavleniya i osnovnye svoistva”, Izv. vuzov. Matematika, 2013, no. 11, 33–50 | MR
[16] Chentsov A.G., “Nekotorye svoistva ultrafiltrov, svyazannye s konstruktsiyami rasshirenii”, Vestn. Udmurt. un-ta (Matematika, mekhanika, kompyuter. nauki), 2014, no. 1, 87–101 | Zbl
[17] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.
[18] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR
[19] Chentsov A.G., “Rasshireniya abstraktnykh zadach o dostizhimosti: nesekventsialnaya versiya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13:2 (2007), 184–217
[20] Chentsov A.G., “The nonsequential approximate solutions in problems of asymptotic analysis”, Soochow Journal of Mathematics, 32:3 (2006), 441–475 | MR | Zbl
[21] Chentsov A.G., “Ultrafiltry v konstruktsiyakh mnozhestv prityazheniya: zadacha soblyudeniya ogranichenii asimptoticheskogo kharaktera”, Differents. uravneniya, 47:7 (2011), 1047–1064 | MR | Zbl
[22] Chentsov A.G., “K voprosu o strukture mnozhestv prityazheniya v topologicheskom prostranstve”, Izv. In-ta matematiki i informatiki Udmurt. un-ta, 2012, no. 1(39), 147–150 | MR
[23] Chentsov A.G., Baklanov A.P., “K voprosu o postroenii mnozhestva dostizhimosti pri ogranicheniyakh asimptoticheskogo kharaktera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 309–323
[24] Chentsov A.G., Elementy konechno-additivnoi teorii mery, I, Izd-vo UGTU-UPI, Ekaterinburg, 2009, 389 pp.
[25] Chentsov A.G., “K voprosu o soblyudenii ogranichenii v klasse obobschennykh elementov”, Vestn. Udmurt. un-ta(Matematika, mekhanika, kompyuter. nauki), 2014, no. 3, 90–109 | MR | Zbl