Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 276-288
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of an optimal cover of sets in three-dimensional Euclidian space by the union of a fixed number of equal balls, where the optimality criterion is the radius of the balls, is studied. Analytical and numerical algorithms based on the division of a set into Dirichlet domains and finding their Chebyshev centers are suggested for this problem. Stochastic iterative procedures are used. Bounds for the asymptotics of the radii of the balls as their number tends to infinity are obtained. The simulation of several examples is performed and their visualization is presented.
Keywords:
Hausdorff deviation, best $n$-net, ball cover, Chebyshev center.
@article{TIMM_2015_21_2_a22,
author = {V. N. Ushakov and P. D. Lebedev},
title = {Algorithms for the construction of an optimal cover for sets in three-dimensional {Euclidean} space},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {276--288},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a22/}
}
TY - JOUR AU - V. N. Ushakov AU - P. D. Lebedev TI - Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 276 EP - 288 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a22/ LA - ru ID - TIMM_2015_21_2_a22 ER -
%0 Journal Article %A V. N. Ushakov %A P. D. Lebedev %T Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space %J Trudy Instituta matematiki i mehaniki %D 2015 %P 276-288 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a22/ %G ru %F TIMM_2015_21_2_a22
V. N. Ushakov; P. D. Lebedev. Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 276-288. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a22/