Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 252-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with nonsmooth problems of optimal control theory and geometrical optics that can be formalized as Dirichlet boundary value problems for first-order partial differential equations (including equations of Hamiltonian type). A methodology is elaborated for the identification and construction of singular sets with the use of multipoint derivatives. Four types of derivatives by virtue of diffeomorphisms are introduced; they generalize the notions of classical derivative and one-sided derivative. Formulas are given for the calculation of derivatives by virtue of diffeomorphisms for some classes of functions. The efficiency of the developed method of analysis is illustrated by the example of solving an optimal time problem in the case of a circular velocity vectogram and nonconvex target with nonsmooth boundary.
Keywords: first-order PDE, minimax solution, diffeomorphism, optimal result function, singular set, symmetry.
Mots-clés : wavefront, eikonal
@article{TIMM_2015_21_2_a20,
     author = {A. A. Uspenskii},
     title = {Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {252--266},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a20/}
}
TY  - JOUR
AU  - A. A. Uspenskii
TI  - Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 252
EP  - 266
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a20/
LA  - ru
ID  - TIMM_2015_21_2_a20
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%T Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 252-266
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a20/
%G ru
%F TIMM_2015_21_2_a20
A. A. Uspenskii. Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 252-266. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a20/

[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp. | MR

[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[4] Kruzhkov S.N., “Obobschennye resheniya uravnenii Gamiltona - Yakobi tipa eikonala, I”, Mat. sb., 98:3 (1975), 450–493 | MR

[5] Subbotin A.I., “Obobschenie osnovnogo uravneniya teorii differentsialnykh igr”, Dokl. AN SSSR, 254:2 (1980), 293–297 | MR | Zbl

[6] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh tekhnologii, M.; Izhevsk, 2003, 336 pp.

[7] Demyanov V.F., Vasilev L.V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[8] Arnold V.I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996, 334 pp. | MR

[9] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR

[10] Uspenskii A.A., Ushakov V.N., Fomin A.N., $\alpha$-mnozhestva i ikh svoistva, Dep. v VINITI 02.04.04,V2004, no. 543, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2004, 62 pp.

[11] Uspenskii A.A., Analiticheskie metody vychisleniya mery nevypuklosti ploskikh mnozhestv, Dep. v VINITI 07.02.07,V2007, no. 104, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2007, 21 pp.

[12] Uspenskii A.A., Lebedev P.D., “Issledovanie geometrii i asimptotiki volnovykh frontov v nekotorykh zadachakh upravleniya”, Tr. 9-i Mezhdunar. Chetaev. konf., 5, 2007, 224–236

[13] Uspenskii A.A., Lebedev P.D., “Geometriya i asimptotika volnovykh frontov”, Izv. vyssh. ucheb. zavedenii, 2008, no. 3, 27–37 | MR | Zbl

[14] Ushakov V.N., Uspenskii A.A., Lebedev P.D., “Postroenie minimaksnogo resheniya uravneniya tipa eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:2 (2008), 182–191 | MR | Zbl

[15] Uspenskii A.A., Lebedev P.D., “Usloviya transversalnosti vetvei resheniya nelineinogo uravneniya v zadache bystrodeistviya s krugovoi indikatrisoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:4 (2008), 82–100 | MR

[16] Uspenskii A.A., Lebedev P.D., “Postroenie funktsii optimalnogo rezultata v zadache bystrodeistviya na osnove mnozhestva simmetrii”, Avtomatika i telemekhanika, 2009, no. 7, 50–57 | MR | Zbl

[17] Uspenskii A.A., Lebedev P.D., “O mnozhestve predelnykh znachenii lokalnykh diffeomorfizmov pri evolyutsii volnovykh frontov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 171–186 | MR

[18] Ushakov V.N., Uspenskii A.A., Lebedev P.D., “Geometriya singulyarnykh krivykh dlya odnogo klassa zadach bystrodeistviya”, Vestn. S.-Peterb. un-ta Ser. 10, 2013, no. 3, 157–167

[19] Uspenskii A.A., “Formuly ischisleniya negladkikh osobennostei funktsii optimalnogo rezultata v zadache bystrodeistviya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 276–290

[20] Byushgens S.S., Differentsialnaya geometriya, GITTL, M., 1940, 300 pp.

[21] Slyusarev G.G., Geometricheskaya optika, Izd-vo AN SSSR, M.; L., 1946, 332 pp. | MR

[22] Dubrovin B.A., Novikov S.P., Fomenko A.T., Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., pererab., Nauka, M., 1986, 760 pp. | MR

[23] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[24] Subbotina N.N., Kolpakova E.A., “O strukture lokalno lipshitsevykh minimaksnykh reshenii uravneniya Gamiltona - Yakobi - Bellmana v terminakh klassicheskikh kharakteristik”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 202–218