Mots-clés : wavefront, eikonal
@article{TIMM_2015_21_2_a20,
author = {A. A. Uspenskii},
title = {Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {252--266},
year = {2015},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a20/}
}
TY - JOUR AU - A. A. Uspenskii TI - Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 252 EP - 266 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a20/ LA - ru ID - TIMM_2015_21_2_a20 ER -
A. A. Uspenskii. Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 252-266. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a20/
[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR
[2] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp. | MR
[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[4] Kruzhkov S.N., “Obobschennye resheniya uravnenii Gamiltona - Yakobi tipa eikonala, I”, Mat. sb., 98:3 (1975), 450–493 | MR
[5] Subbotin A.I., “Obobschenie osnovnogo uravneniya teorii differentsialnykh igr”, Dokl. AN SSSR, 254:2 (1980), 293–297 | MR | Zbl
[6] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh tekhnologii, M.; Izhevsk, 2003, 336 pp.
[7] Demyanov V.F., Vasilev L.V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR
[8] Arnold V.I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996, 334 pp. | MR
[9] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR
[10] Uspenskii A.A., Ushakov V.N., Fomin A.N., $\alpha$-mnozhestva i ikh svoistva, Dep. v VINITI 02.04.04,V2004, no. 543, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2004, 62 pp.
[11] Uspenskii A.A., Analiticheskie metody vychisleniya mery nevypuklosti ploskikh mnozhestv, Dep. v VINITI 07.02.07,V2007, no. 104, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2007, 21 pp.
[12] Uspenskii A.A., Lebedev P.D., “Issledovanie geometrii i asimptotiki volnovykh frontov v nekotorykh zadachakh upravleniya”, Tr. 9-i Mezhdunar. Chetaev. konf., 5, 2007, 224–236
[13] Uspenskii A.A., Lebedev P.D., “Geometriya i asimptotika volnovykh frontov”, Izv. vyssh. ucheb. zavedenii, 2008, no. 3, 27–37 | MR | Zbl
[14] Ushakov V.N., Uspenskii A.A., Lebedev P.D., “Postroenie minimaksnogo resheniya uravneniya tipa eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:2 (2008), 182–191 | MR | Zbl
[15] Uspenskii A.A., Lebedev P.D., “Usloviya transversalnosti vetvei resheniya nelineinogo uravneniya v zadache bystrodeistviya s krugovoi indikatrisoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:4 (2008), 82–100 | MR
[16] Uspenskii A.A., Lebedev P.D., “Postroenie funktsii optimalnogo rezultata v zadache bystrodeistviya na osnove mnozhestva simmetrii”, Avtomatika i telemekhanika, 2009, no. 7, 50–57 | MR | Zbl
[17] Uspenskii A.A., Lebedev P.D., “O mnozhestve predelnykh znachenii lokalnykh diffeomorfizmov pri evolyutsii volnovykh frontov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 171–186 | MR
[18] Ushakov V.N., Uspenskii A.A., Lebedev P.D., “Geometriya singulyarnykh krivykh dlya odnogo klassa zadach bystrodeistviya”, Vestn. S.-Peterb. un-ta Ser. 10, 2013, no. 3, 157–167
[19] Uspenskii A.A., “Formuly ischisleniya negladkikh osobennostei funktsii optimalnogo rezultata v zadache bystrodeistviya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 276–290
[20] Byushgens S.S., Differentsialnaya geometriya, GITTL, M., 1940, 300 pp.
[21] Slyusarev G.G., Geometricheskaya optika, Izd-vo AN SSSR, M.; L., 1946, 332 pp. | MR
[22] Dubrovin B.A., Novikov S.P., Fomenko A.T., Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., pererab., Nauka, M., 1986, 760 pp. | MR
[23] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR
[24] Subbotina N.N., Kolpakova E.A., “O strukture lokalno lipshitsevykh minimaksnykh reshenii uravneniya Gamiltona - Yakobi - Bellmana v terminakh klassicheskikh kharakteristik”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 202–218