Solutions of evolution inclusions generated by a difference of subdifferentials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 236-251 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An evolution inclusion with the right-hand side containing the difference of subdifferentials of proper convex lower semicontinuous functions and a multivalued perturbation whose values are nonconvex closed sets is considered in a separable Hilbert space. In addition to the original inclusion, we consider an inclusion with convexified perturbation and a perturbation whose values are extremal points of the convexified perturbation that also belong to the values of the original perturbation. Issues of the existence of solutions under various perturbations are studied and relations between solutions are established. The primary focus is on the weakening of assumptions on the perturbation as compared to the known assumptions under which existence and relaxation theorems are valid. All our assumptions, in contrast to the known assumptions, concern the convexified rather than original perturbation.
Mots-clés : evolution inclusions
Keywords: difference of subdifferentials, relaxation.
@article{TIMM_2015_21_2_a19,
     author = {A. A. Tolstonogov},
     title = {Solutions of evolution inclusions generated by a difference of subdifferentials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {236--251},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a19/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Solutions of evolution inclusions generated by a difference of subdifferentials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 236
EP  - 251
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a19/
LA  - ru
ID  - TIMM_2015_21_2_a19
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Solutions of evolution inclusions generated by a difference of subdifferentials
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 236-251
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a19/
%G ru
%F TIMM_2015_21_2_a19
A. A. Tolstonogov. Solutions of evolution inclusions generated by a difference of subdifferentials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 236-251. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a19/

[1] Koi Y., Watanabe J., “On nonlinear evolution equation with a difference term of subdifferentials”, Proc. Japan. Acad., 1976, no. 52, 413–446 | DOI | MR

[2] Otani M., “On existence of strong solutions for $du(t)/dt +\partial \psi^1(u(t))-\partial \psi^2(u(t))\ni f(t)$”, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 24:3 (1977), 575–605 | MR | Zbl

[3] Akagi G., Otani M., “Evolution inclusions governed by the difference of two subdifferentials in reflexive Banach spaces”, J. Diff. Equat., 209:2 (2005), 392–415 | DOI | MR | Zbl

[4] Bourgin R.D., Geometric aspects of convex sets with the Radon-Nikodym property, Lecture Notes in Math., 993, Springer-Verlag, Berlin, 1983, 474 pp. | MR | Zbl

[5] Himmelberg C.J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl

[6] Brezis H., Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam; London, 1973, 183 pp. | MR | Zbl

[7] Kenmochi N., “Solvability of nonlinear evolution equations with time-dependent constraints and applications”, Bull. Fac. Educ. Chiba University, 30 (1981), 1–87 | Zbl

[8] Tolstonogov A.A., “Relaksatsiya v nevypuklykh zadachakh optimalnogo upravleniya, opisyvaemykh evolyutsionnymi uravneniyami pervogo poryadka”, Mat. sb., 190:11 (1999), 135–160 | DOI | MR | Zbl

[9] Tolstonogov A.A., “Strogo vystavlennye tochki razlozhimykh mnozhestv v prostranstvakh integriruemykh po Bokhneru funktsii”, Mat. zametki, 71:2 (2002), 298–306 | DOI | MR | Zbl

[10] Hiai F., Umegaki H., “Integrals, conditional expectations and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182 | DOI | MR | Zbl

[11] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 896 pp.

[12] Tolstonogov A.A., Tolstonogov D.A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl

[13] Tolstonogov A.A., “K teoreme Skortsa - Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Mat. zametki, 48:5 (1990), 109–120 | MR | Zbl

[14] Fryszkowski A., “Continuous selections for a class of nonsonvex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl

[15] Tolstonogov A.A., Tolstonogov D.A., “$L_p$-continuous extreme selectors of multifunction with decomposable values: relaxation theorems”, Set-valued Anal., 4:3 (1996), 237–269 | DOI | MR | Zbl

[16] Filippov A.F., “Klassicheskie resheniya uravnenii s mnogoznachnoi pravoi chastyu”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1967, no. 3, 16–26 | Zbl