On the continuous extension of a generalized solution of the Hamilton-Jacobi equation by characteristics that form a central field of extremals
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 220-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Cauchy problem for the Hamilton-Jacobi equation with state constraints is considered. A justification for a construction of a generalized solution with given structure is provided. The construction is based on the method of characteristics and on solutions of problems related to calculus of variations.
Keywords: Hamilton-Jacobi equations, method of characteristics, viscosity solutions, minimax solutions, extremals.
Mots-clés : calculus of variations
@article{TIMM_2015_21_2_a18,
     author = {N. N. Subbotina and L. G. Shagalova},
     title = {On the continuous extension of a generalized solution of the {Hamilton-Jacobi} equation by characteristics that form a central field of extremals},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {220--235},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a18/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - L. G. Shagalova
TI  - On the continuous extension of a generalized solution of the Hamilton-Jacobi equation by characteristics that form a central field of extremals
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 220
EP  - 235
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a18/
LA  - ru
ID  - TIMM_2015_21_2_a18
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A L. G. Shagalova
%T On the continuous extension of a generalized solution of the Hamilton-Jacobi equation by characteristics that form a central field of extremals
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 220-235
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a18/
%G ru
%F TIMM_2015_21_2_a18
N. N. Subbotina; L. G. Shagalova. On the continuous extension of a generalized solution of the Hamilton-Jacobi equation by characteristics that form a central field of extremals. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 220-235. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a18/

[1] Subbotina N.N., Shagalova L.G., “O reshenii zadachi Koshi dlya uravneniya Gamiltona - Yakobi s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 191–208 | MR

[2] Subbotina N.N., Shagalova L.G., “Postroenie obobschennogo resheniya uravneniya, sokhranyayuschego tip Bellmana v zadannoi oblasti fazovogo prostranstva”, Tr. MIAN, 277 (2012), 243–256 | MR | Zbl

[3] Subbotina N.N., Shagalova L.G., “Konstruktsiya nepreryvnogo minimaksnogo/vyazkostnogo resheniya uravneniya Gamiltona - Yakobi - Bellmana s neprodolzhimymi kharakteristikami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 247–257

[4] Saakian D.B., Rozanova O., Akmetzhanov A., “Dynamics of the Eigen and the Crow-Kimura models for molecular evolution”, Phys. Rev. E (3), 78:4 (2008), 041908, 6 pp. | DOI | MR

[5] Kruzhkov S.N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, I”, Mat. sb., 70(112):3 (1966), 394–415 | Zbl

[6] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona - Yakobi, Nauka, M., 1991, 216 pp. | MR

[7] Subbotin A.I., Generalized Solutions of First Order PDEs: The dynamical optimization perspective, Birkhauser, Boston, 1995, 312 pp. | MR

[8] Crandall M.G., Lions P.L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[9] Capuzzo-Dolcetta I., Lions P.-L., “Hamilton-Jacobi Equations with State Constraints”, Trans. Amer. Math. Soc., 318:2 (1990), 643–683 | DOI | MR | Zbl

[10] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 832 pp. | MR

[11] Petrovskii I.G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970, 280 pp. | MR

[12] Subbotina N.N., “The method of characteristics for Hamilton-Jacobi equation and its applications in dynamical optimization”, Modern Mathematics and its Applications, 2004, no. 20, 2955–3091 | MR

[13] N.N. Subbotina, E.A. Kolpakova, T.B. Tokmantsev, L.G. Shagalova, Metod kharakteristik dlya uravneniya Gamiltona - Yakobi - Bellmana, RIO UrO RAN, Ekaterinburg, 2013, 244 pp.

[14] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR

[15] Elsgolts L.E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969, 424 pp. | MR

[16] Vanko V.I, Ermoshina O.V, Kuvyrkin G.N., Variatsionnoe ischislenie i optimalnoe upravlenie, Izd-vo MGTU im. N.E. Baumana, M., 2006, 488 pp.

[17] Pontryagin L.S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974, 332 pp. | MR