@article{TIMM_2015_21_2_a17,
author = {O. S. Rozanova},
title = {On the connection of the {Hamilton-Jacobi} equation with some systems of quasilinear equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {206--219},
year = {2015},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a17/}
}
TY - JOUR AU - O. S. Rozanova TI - On the connection of the Hamilton-Jacobi equation with some systems of quasilinear equations JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 206 EP - 219 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a17/ LA - ru ID - TIMM_2015_21_2_a17 ER -
O. S. Rozanova. On the connection of the Hamilton-Jacobi equation with some systems of quasilinear equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 206-219. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a17/
[1] Bec J., Khanin K., “Burgers turbulence”, Phys. Rep., 447 (2007), 1–66 | DOI | MR
[2] Laks P.D., Giperbolicheskie differentsialnye uravneniya v chastnykh proizvodnykh, Regulyarnaya i khaoticheskaya dinamika, M.; In-t kompyuternykh issledovanii, Izhevsk, 2010, 296 pp.
[3] Hopf E., “The partial differential equation $u_t + uu_x = \mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl
[4] Cole J.D., “On a quasi-linear parabolic equation occurring in aerodynamics”, Quart. Appl. Math., 9 (1951), 225–236 | MR | Zbl
[5] Subbotin A. I., “Minimaksnye resheniya uravnenii Gamiltona - Yakobi”, Itogi nauki i tekhniki. Temat. obzory.(Sovrem. matematika i ee prilozheniya), 64, VINITI, M., 1999, 222–231 | MR | Zbl
[6] Subbotin A.I., Generalized solutions of PDEs of the first order: the dynamical optimization perspective, Birkhauser, Boston, 1995, 312 pp. | MR
[7] Evans L.K., Uravneniya s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 2003, 560 pp.
[8] Kruzhkov S.N., “Obobschennye resheniya uravnenii Gamiltona - Yakobi tipa eikonala. I. Postanovka zadach, teoremy suschestvovaniya, edinstvennosti i ustoichivosti, nekotorye svoistva reshenii”, Mat. sb., 98(140):3(11) (1975), 450–493 | MR
[9] Lions P.-L., Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, 69, Pitman, Boston, 1982, 317 pp. | MR | Zbl
[10] Crandall M.G, Ishii H., Lions P.-L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc., 27 (1992), 1–67 | DOI | MR | Zbl
[11] Crandall M. G., Evans L.C., Lions P.-L., “Some properties of viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 282 (1984), 487–502 | DOI | MR | Zbl
[12] Lax P., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Comm. Pure Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl
[13] Oleinik O.A., “O zadache Koshi dlya nelineinykh uravnenii v klasse razryvnykh funktsii”, Dokl. AN SSSR, 95:3 (1954), 451–454 | MR
[14] Dafermos C.M., Hyperbolic conservation laws in continuum physics, 3rd ed., Springer, Berlin; Heidelberg, 2010, 691 pp. | MR | Zbl
[15] Frisch U., Bec J., “Burgulence”, New trends in turbulence. Turbulence: nouveaux aspects (Les Houches, 2000), eds. M. Lesieur, A. Yaglom, F. David, Springer, Berlin, 2001, 341–383 | DOI | MR
[16] Cartan H., Differential forms, Dover, Mineola; New-York, 2006, 176 pp. | Zbl
[17] Haantjes A., “On $X_{n-1}$-forming sets of eigenvectors”, Indagationes Mathematicae, 17 (1955), 158–162 | DOI | MR
[18] “Nijenhuis A. $X_{n-1}$-forming sets of eigenvectors”, Indagationes Mathematicae, 13 (1951), 200–212 | MR | Zbl
[19] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii, Fizmatlit, Moskva, 1979, 591 pp.
[20] Babskii V.G., Zhukov M.Yu., Yudovich V.I., Matematicheskaya teoriya elektroforeza. Primenenie k metodam fraktsionirovaniya biopolimerov, Naukova dumka, Kiev, 1983, 204 pp.
[21] The mathematical understanding of chemical engineering systems: selected papers of Neal R.Amundson, eds. R. Aris, A. Varma, Pergamon Press, Oxford; New York; Toronto; Sydney; Paris; Frankfurt, 1980, 829 pp. | MR
[22] Rozanova O., “Stochastic perturbations method for a system of Riemann invariants”, Math. Commun., 19:3 (2014), 573–580 | MR | Zbl
[23] Albeveriio S., Korshunova A., Rozanova O., “A probabilistic model associated with the pressureless gas dynamics”, Bulletin des Sciences Mathematiques, 137:7 (2013), 902–922 | DOI | MR
[24] Kiperman S.L., Osnovy khimicheskoi kinetiki v geterogennom katalize, Khimiya, M., 1979, 349 pp.
[25] Ferapontov E. V., Tsarev S. P., “Sistemy gidrodinamicheskogo tipa, voznikayuschie v gazovoi khromatografii. Invarianty Rimana i tochnye resheniya”, Mat. modelirovanie, 3:2 (1991), 82–91 | MR | Zbl
[26] Zhukov M.Yu., Yudovich V.I., “Matematicheskaya teoriya izotakhoforeza”, Dokl. AN SSSR, 267:2 (1982), 334–338
[27] Albeverio S., Rozanova O., “The non-viscous Burgers equation associated with random positions in coordinate space: a threshold for blow up behavior”, Math. Models Methods Appl. Sci., 19:5 (2009), 749–767 | DOI | MR | Zbl
[28] Albeverio S., Rozanova O., “Suppression of unbounded gradients in a SDE associated with the Burgers equation”, Proc. Amer. Math. Soc., 138:1 (2010), 241–251 | DOI | MR | Zbl
[29] Risken H., Frank, T., The Fokker-Planck equation: methods of solution and applications, 2nd ed., Springer, Berlin, 1996, 472 pp. | MR
[30] Albeveriio S., Rozanova O., “A representation of solutions to a scalar conservation law in several dimensions”, J. Math. Anal. Appl., 405:2 (2013), 711–719 | DOI | MR
[31] Khanin K, Sobolevski A., “Particle dynamics inside shocks in Hamilton-Jacobi equations”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 368:1916 (2010), 1579–1593 | DOI | MR | Zbl