On the connection of the Hamilton-Jacobi equation with some systems of quasilinear equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 206-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show that the Hamilton-Jacobi equation with some conditions on the Hamiltonian can be associated with a quasilinear system of equations of the first order, which can be reduced to the vector Hopf equation. We find relations between the system of Riemann invariants and a specially constructed Hamilton-Jacobi equation. The result is illustrated with examples of a system of isentropic gas dynamics equations and a system of equations of chromatography. It is shown that the method of stochastic perturbations along characteristics allows to associate with the Hamilton-Jacobi equation a system of conservation laws.
Keywords: Hamilton-Jacobi equation, Hopf equation, system of Riemann invariants, viscous regularization, stochastic regularization.
@article{TIMM_2015_21_2_a17,
     author = {O. S. Rozanova},
     title = {On the connection of the {Hamilton-Jacobi} equation with some systems of quasilinear equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {206--219},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a17/}
}
TY  - JOUR
AU  - O. S. Rozanova
TI  - On the connection of the Hamilton-Jacobi equation with some systems of quasilinear equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 206
EP  - 219
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a17/
LA  - ru
ID  - TIMM_2015_21_2_a17
ER  - 
%0 Journal Article
%A O. S. Rozanova
%T On the connection of the Hamilton-Jacobi equation with some systems of quasilinear equations
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 206-219
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a17/
%G ru
%F TIMM_2015_21_2_a17
O. S. Rozanova. On the connection of the Hamilton-Jacobi equation with some systems of quasilinear equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 206-219. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a17/

[1] Bec J., Khanin K., “Burgers turbulence”, Phys. Rep., 447 (2007), 1–66 | DOI | MR

[2] Laks P.D., Giperbolicheskie differentsialnye uravneniya v chastnykh proizvodnykh, Regulyarnaya i khaoticheskaya dinamika, M.; In-t kompyuternykh issledovanii, Izhevsk, 2010, 296 pp.

[3] Hopf E., “The partial differential equation $u_t + uu_x = \mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[4] Cole J.D., “On a quasi-linear parabolic equation occurring in aerodynamics”, Quart. Appl. Math., 9 (1951), 225–236 | MR | Zbl

[5] Subbotin A. I., “Minimaksnye resheniya uravnenii Gamiltona - Yakobi”, Itogi nauki i tekhniki. Temat. obzory.(Sovrem. matematika i ee prilozheniya), 64, VINITI, M., 1999, 222–231 | MR | Zbl

[6] Subbotin A.I., Generalized solutions of PDEs of the first order: the dynamical optimization perspective, Birkhauser, Boston, 1995, 312 pp. | MR

[7] Evans L.K., Uravneniya s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 2003, 560 pp.

[8] Kruzhkov S.N., “Obobschennye resheniya uravnenii Gamiltona - Yakobi tipa eikonala. I. Postanovka zadach, teoremy suschestvovaniya, edinstvennosti i ustoichivosti, nekotorye svoistva reshenii”, Mat. sb., 98(140):3(11) (1975), 450–493 | MR

[9] Lions P.-L., Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, 69, Pitman, Boston, 1982, 317 pp. | MR | Zbl

[10] Crandall M.G, Ishii H., Lions P.-L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc., 27 (1992), 1–67 | DOI | MR | Zbl

[11] Crandall M. G., Evans L.C., Lions P.-L., “Some properties of viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 282 (1984), 487–502 | DOI | MR | Zbl

[12] Lax P., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Comm. Pure Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl

[13] Oleinik O.A., “O zadache Koshi dlya nelineinykh uravnenii v klasse razryvnykh funktsii”, Dokl. AN SSSR, 95:3 (1954), 451–454 | MR

[14] Dafermos C.M., Hyperbolic conservation laws in continuum physics, 3rd ed., Springer, Berlin; Heidelberg, 2010, 691 pp. | MR | Zbl

[15] Frisch U., Bec J., “Burgulence”, New trends in turbulence. Turbulence: nouveaux aspects (Les Houches, 2000), eds. M. Lesieur, A. Yaglom, F. David, Springer, Berlin, 2001, 341–383 | DOI | MR

[16] Cartan H., Differential forms, Dover, Mineola; New-York, 2006, 176 pp. | Zbl

[17] Haantjes A., “On $X_{n-1}$-forming sets of eigenvectors”, Indagationes Mathematicae, 17 (1955), 158–162 | DOI | MR

[18] “Nijenhuis A. $X_{n-1}$-forming sets of eigenvectors”, Indagationes Mathematicae, 13 (1951), 200–212 | MR | Zbl

[19] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii, Fizmatlit, Moskva, 1979, 591 pp.

[20] Babskii V.G., Zhukov M.Yu., Yudovich V.I., Matematicheskaya teoriya elektroforeza. Primenenie k metodam fraktsionirovaniya biopolimerov, Naukova dumka, Kiev, 1983, 204 pp.

[21] The mathematical understanding of chemical engineering systems: selected papers of Neal R.Amundson, eds. R. Aris, A. Varma, Pergamon Press, Oxford; New York; Toronto; Sydney; Paris; Frankfurt, 1980, 829 pp. | MR

[22] Rozanova O., “Stochastic perturbations method for a system of Riemann invariants”, Math. Commun., 19:3 (2014), 573–580 | MR | Zbl

[23] Albeveriio S., Korshunova A., Rozanova O., “A probabilistic model associated with the pressureless gas dynamics”, Bulletin des Sciences Mathematiques, 137:7 (2013), 902–922 | DOI | MR

[24] Kiperman S.L., Osnovy khimicheskoi kinetiki v geterogennom katalize, Khimiya, M., 1979, 349 pp.

[25] Ferapontov E. V., Tsarev S. P., “Sistemy gidrodinamicheskogo tipa, voznikayuschie v gazovoi khromatografii. Invarianty Rimana i tochnye resheniya”, Mat. modelirovanie, 3:2 (1991), 82–91 | MR | Zbl

[26] Zhukov M.Yu., Yudovich V.I., “Matematicheskaya teoriya izotakhoforeza”, Dokl. AN SSSR, 267:2 (1982), 334–338

[27] Albeverio S., Rozanova O., “The non-viscous Burgers equation associated with random positions in coordinate space: a threshold for blow up behavior”, Math. Models Methods Appl. Sci., 19:5 (2009), 749–767 | DOI | MR | Zbl

[28] Albeverio S., Rozanova O., “Suppression of unbounded gradients in a SDE associated with the Burgers equation”, Proc. Amer. Math. Soc., 138:1 (2010), 241–251 | DOI | MR | Zbl

[29] Risken H., Frank, T., The Fokker-Planck equation: methods of solution and applications, 2nd ed., Springer, Berlin, 1996, 472 pp. | MR

[30] Albeveriio S., Rozanova O., “A representation of solutions to a scalar conservation law in several dimensions”, J. Math. Anal. Appl., 405:2 (2013), 711–719 | DOI | MR

[31] Khanin K, Sobolevski A., “Particle dynamics inside shocks in Hamilton-Jacobi equations”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 368:1916 (2010), 1579–1593 | DOI | MR | Zbl