One-step numerical methods for mixed functional differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 187-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

First-order partial differential equations are reduced to ordinary differential equations by the method of characteristics. If there is a delay in the original equation, a similar method reduces the equation to a mixed functional differential equation with influence effects in the space variable and with time heredity. We present schemes of one-step multistage methods (analogs of explicit Runge-Kutta methods) for the numerical solution of mixed functional differential equations with the use of two-dimensional interpolation by degenerate splines. Orders of convergence are studied and results of numerical experiments on test examples are given.
Keywords: mixed functional differential equations, numerical algorithm, two-dimensional interpolation
Mots-clés : extrapolation, convergence.
@article{TIMM_2015_21_2_a15,
     author = {V. G. Pimenov and M. A. Panachev},
     title = {One-step numerical methods for mixed functional differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {187--197},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a15/}
}
TY  - JOUR
AU  - V. G. Pimenov
AU  - M. A. Panachev
TI  - One-step numerical methods for mixed functional differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 187
EP  - 197
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a15/
LA  - ru
ID  - TIMM_2015_21_2_a15
ER  - 
%0 Journal Article
%A V. G. Pimenov
%A M. A. Panachev
%T One-step numerical methods for mixed functional differential equations
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 187-197
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a15/
%G ru
%F TIMM_2015_21_2_a15
V. G. Pimenov; M. A. Panachev. One-step numerical methods for mixed functional differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 187-197. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a15/

[1] Myshkis A.D., “Smeshannye funktsionalno-differentsialnye uravneniya”, Sovremennaya matematika. Fundamentalnye napravleniya, 4 (2003), 5–120

[2] Kim A.V., Pimenov V.G., i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, RKhD, M.; Izhevsk, 2004, 256 pp.

[3] Pimenov V.G., Lozhnikov A.B., “Raznostnye skhemy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 178–189 | Zbl

[4] Pimenov V.G., Panachev M.A., “Chislennye algoritmy i programmy dlya resheniya smeshannykh funktsionalno-differentsialnykh uravnenii”, Teoriya upravleniya i matematicheskoe modelirovanie, tr. konf., Izd. IzhGTU, Izhevsk, 2012, 60–61

[5] Pimenov V.G., Panachev M.A., “Reshenie uravneniya perenosa s zapazdyvaniem putem ispolzovaniya chislennykh metodov dlya smeshannykh funktsionalno-differentsialnykh uravnenii”, Vest. Tamb. un-ta. Ser. Estestvennye i tekhnicheskie nauki, 18:5-2 (2013), 2637–2638

[6] Panachev M.A., “Startingless multistep methods approach for the numerical solution of the mixed functional differential equations”, AIP Conf. Proc., 1631, no. 1, 2014, 224–229 | DOI

[7] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[8] Pimenov V.G., Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd-vo Ural. un-ta, Ekaterinburg, 2014, 132 pp.