Multiple capture in Pontryagin's recursive example with phase constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 178-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider Pontryagin's generalized nonstationary example with identical dynamic and inertial capabilities of the players and state constraints on the evader's states. The boundary of the phase constraints is not a “death line” for the evader. The set of admissible controls is a ball centered at the origin, and the terminal sets are the origin. We obtain sufficient conditions for a multiple capture of one evader by a group of pursuers in the case when some functions corresponding to the initial data and parameters of the game are recursive.
Keywords: pursuer, evader, phase restrictions, Pontryagin's example, group pursuit.
@article{TIMM_2015_21_2_a14,
     author = {N. N. Petrov and N. A. Solov'eva},
     title = {Multiple capture in {Pontryagin's} recursive example with phase constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {178--186},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a14/}
}
TY  - JOUR
AU  - N. N. Petrov
AU  - N. A. Solov'eva
TI  - Multiple capture in Pontryagin's recursive example with phase constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 178
EP  - 186
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a14/
LA  - ru
ID  - TIMM_2015_21_2_a14
ER  - 
%0 Journal Article
%A N. N. Petrov
%A N. A. Solov'eva
%T Multiple capture in Pontryagin's recursive example with phase constraints
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 178-186
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a14/
%G ru
%F TIMM_2015_21_2_a14
N. N. Petrov; N. A. Solov'eva. Multiple capture in Pontryagin's recursive example with phase constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 178-186. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a14/

[1] Pontryagin L.S., Izbrannye nauchnye trudy, 2, Nauka, M., 1988, 576 pp. | MR

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 287 pp. | MR

[4] Chikrii A.A., Konfliktno upravlyaemye protsessy, Nauk. Dumka, Kiev, 1992, 384 pp.

[5] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 197 pp.

[6] Blagodatskikh A.I., Petrov N.N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp. | MR

[7] Pshenichnyi B.N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146

[8] Bannikov A.S., Petrov N.N., “K nestatsionarnoi zadache gruppovogo presledovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 40–51

[9] Blagodatskikh A.I., “O zadache gruppovogo presledovaniya v nestatsionarnom primere Pontryagina”, Vest. Udmurt. un-ta (Matematika.), 2007, no. 1, 17–24

[10] Petrov N.N., ““Myagkaya” poimka v primere L.S. Pontryagina so mnogimi uchastnikami”, Prikl. matematika i mekhanika, 67:5 (2003), 759–770 | MR | Zbl

[11] Grigorenko N.L., “Igra prostogo presledovaniya-ubeganiya gruppy presledovatelei i odnogo ubegayuschego”, Vestn. MGU. Ser. Vychislit. matematika i kibernetika, 1983, no. 1, 41–47 | MR | Zbl

[12] Blagodatskikh A.I., “Odnovremennaya mnogokratnaya poimka v zadache prostogo presledovaniya”, Prikl. matematika i mekhanika, 73:1 (2009), 54–59 | MR | Zbl

[13] Petrov N.N., “Mnogokratnaya poimka v primere L.S. Pontryagina s fazovymi ogranicheniyami”, Prikl. matematika i mekhanika, 61:5 (1997), 747–754 | MR | Zbl

[14] Blagodatskikh A.I., “Mnogokratnaya poimka v primere Pontryagina”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki), 2009, no. 2, 3–12 | MR

[15] Soloveva N.A., “Gruppovoe presledovanie v rekurrentnom primere L.S.Pontryagina”, Vest. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki), 2014, no. 3, 83–89 | Zbl

[16] Soloveva N.A., “Odna zadacha gruppovogo presledovaniya v lineinykh rekurrentnykh differentsialnykh igrakh”, Matematicheskaya teoriya igr i ee prilozheniya, 3:1 (2011), 81–90 | MR

[17] Vinogradova M.N., Petrov N.N., Soloveva N.A., “Poimka dvukh skoordinirovannykh ubegayuschikh v lineinykh rekurrentnykh differentsialnykh igrakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 41–48 | MR

[18] Zubov V.I., “K teorii rekurrentnykh funktsii”, Sib. mat. zhurn., 3:4 (1962), 532–560 | MR | Zbl

[19] Petrov N.N., “Ob upravlyaemosti avtonomnykh sistem”, Differents. uravneniya, 4:4 (1968), 606–617 | Zbl

[20] Partkhasaratkhi T., Ragkhavan T., Nekotorye voprosy teorii igr dvukh lits, Mir, M., 1974, 296 pp.

[21] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. MGU. Ser. Matematika, mekhanika, 1959, no. 6, 25–32 | Zbl