@article{TIMM_2015_21_2_a13,
author = {A. I. Ovseevich and A. K. Fedorov},
title = {Damping of a system of linear oscillators using the generalized dry friction},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {168--177},
year = {2015},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a13/}
}
TY - JOUR AU - A. I. Ovseevich AU - A. K. Fedorov TI - Damping of a system of linear oscillators using the generalized dry friction JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 168 EP - 177 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a13/ LA - ru ID - TIMM_2015_21_2_a13 ER -
A. I. Ovseevich; A. K. Fedorov. Damping of a system of linear oscillators using the generalized dry friction. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 168-177. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a13/
[1] Ovseevich A.I., Fedorov A.K., “Asimptoticheskoe optimalnoe upravlenie v forme sinteza dlya sistemy lineinykh ostsillyatorov”, Dokl. akad. nauk, 2013, no. 3, 266–270 | DOI | MR | Zbl
[2] Fedorov A.K., Ovseevich A.I., Asymptotic control theory for a system of linear oscillators, Preprint arXiv:1308.6090, arXiv: arXiv:1308.6090
[3] Ovseevich A.I., Fedorov A.K., “Dvizhenie sistemy ostsillyatorov pod deistviem obobschennogo sukhogo treniya”, Avtomatika i telemekhanika, 2015, no. 5, 121–129
[4] DiPerna R.J., Lions P.L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[5] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze [i dr.], Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 393 pp.
[6] Kalman R.E., “Ob obschei teorii sistem upravleniya”, Tr. 1-go Kongressa Mezhdunar. federatsii po avtomaticheskomu upravleniyu, Moskva, 1960, 481–492
[7] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 432 pp. | MR
[8] Chernousko F.L., “O postroenii ogranichennogo upravleniya v kolebatelnykh sistemakh”, Prikl. matematika i mekhanika, 1988, no. 4, 549–558 | MR | Zbl
[9] Ovseevich A.I., “O polnoi upravlyaemosti lineinykh dinamicheskikh sistem”, Prikl. matematika i mekhanika, 1989, no. 5, 845–848 | MR | Zbl
[10] Ovseevich A.I., “Limit behaviour of attainable and superattainable sets”, Proc. Conf. Modeling, Estimation and Filtering of Systems with Uncertainty, Hungary, 1990, 324–333 | MR
[11] Goncharova E.V., Ovseevich A.I., “Sravnitelnyi analiz asimptoticheskoi dinamiki mnozhestv dostizhimosti lineinykh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 4, 5–13 | MR | Zbl
[12] Ovseevich A.I., “Singularities of attainable sets”, Russian J. Math. Physics, 5:3 (1998), 389–398 | MR
[13] Schneider R., Convex bodies: The Brunn-Minkowski theory, Cambridge University Press, Cambridge, 1993, 490 pp. | MR | Zbl
[14] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR
[15] Ovseevich A.I., “Irregular dynamic systems according to R.J. DiPerna and P.L. Lions”, Funct. Anal. Other Math., 4:1 (2012), 57–70 | MR
[16] Bogaevskii I.A., “Razryvnye gradientnye differentsialnye uravneniya i traektorii v variatsionnom ischislenii”, Mat. sb., 197:12 (2006), 11–42 | DOI | MR