On a modification of the extremal shift method for a second-order differential equation in a Hilbert space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 150-159

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of tracking a solution of a second-order differential equation in a Hilbert space by a solution of another equation is considered. It is assumed that the first (reference) equation is subject to the action of an unknown control, which is unbounded in time. In the case when the current states of both equation are observed with small errors, a solution algorithm stable with respect to informational noises and computational inaccuracies is designed. The algorithm is based on N.N.Krasovskii's extremal shift method known in the theory of guaranteed control.
Keywords: tracking a solution, extremal shift, second-order equation.
@article{TIMM_2015_21_2_a11,
     author = {V. I. Maksimov},
     title = {On a modification of the extremal shift method for a second-order differential equation in a {Hilbert} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {150--159},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a11/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On a modification of the extremal shift method for a second-order differential equation in a Hilbert space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 150
EP  - 159
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a11/
LA  - ru
ID  - TIMM_2015_21_2_a11
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On a modification of the extremal shift method for a second-order differential equation in a Hilbert space
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 150-159
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a11/
%G ru
%F TIMM_2015_21_2_a11
V. I. Maksimov. On a modification of the extremal shift method for a second-order differential equation in a Hilbert space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 150-159. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a11/