An approximation algorithm for quadratic dynamic systems based on N. Chomsky's grammar for Taylor's formula
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 21-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Single-step methods for the approximate solution of the Cauchy problem for dynamic systems are discussed. It is shown that a numerical integration algorithm with a high degree of accuracy based on Taylor's formula can be proposed in the case of quadratic systems. An explicit estimate is given for the remainder term. The algorithm is based on N. Chomsky's generative grammar for the language of terms of Taylor's formula.
Keywords: dynamic system, quadratic system of equations, Cauchy problem, numerical solution, Taylor's formula, remainder term, error estimate, algorithm, context-free grammar.
@article{TIMM_2015_21_2_a1,
     author = {A. A. Azamov and M. A. Bekimov},
     title = {An approximation algorithm for quadratic dynamic systems based on {N.} {Chomsky's} grammar for {Taylor's} formula},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {21--25},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a1/}
}
TY  - JOUR
AU  - A. A. Azamov
AU  - M. A. Bekimov
TI  - An approximation algorithm for quadratic dynamic systems based on N. Chomsky's grammar for Taylor's formula
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 21
EP  - 25
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a1/
LA  - ru
ID  - TIMM_2015_21_2_a1
ER  - 
%0 Journal Article
%A A. A. Azamov
%A M. A. Bekimov
%T An approximation algorithm for quadratic dynamic systems based on N. Chomsky's grammar for Taylor's formula
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 21-25
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a1/
%G ru
%F TIMM_2015_21_2_a1
A. A. Azamov; M. A. Bekimov. An approximation algorithm for quadratic dynamic systems based on N. Chomsky's grammar for Taylor's formula. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 21-25. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a1/

[1] Anosov D.V., “Lorentsa attraktor”, Matematicheskaya entsiklopediya, 3, Nauka, M., 1982

[2] Bakhvalov N.S., Chislennye metody, Nauka, M., 1973, 632 pp. | MR

[3] Gladkii A.V., Formalnye grammatiki i yazyki, Nauka, M., 1973, 368 pp. | MR

[4] Zorich V.A., Matematicheskii analiz, no. 2, Nauka, M., 1984, 640 pp. | MR

[5] Ilyashenko Yu.S., Izbrannye zadachi teorii dinamicheskikh sistem, Izd-vo MTsNMO, M., 2011, 124 pp.

[6] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971, 392 pp. | MR

[7] Artes J.C., Llibre J., “Quadratic Hamiltonian vector fields”, J. Diff. Equations, 107 (1994), 80–95 | DOI | MR | Zbl

[8] Butcher J.C., Numerical methods for ordinary differential equations, 2nd ed., John Wiley Sons Ltd., New York, 2008, 482 pp. | MR | Zbl

[9] Chomsky N., “Three models for the description of language”, IRE Transactions on Information Theory, 2 (1956), 113–124 | DOI

[10] Coppel W.A., “A survey of quadratic systems”, J. Diff. Equations, 2 (1966), 293–304 | DOI | MR | Zbl

[11] Guckenheimer J., “Computational environments for exploring dynamical systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg, 1:2 (1991), 269–276 | DOI | MR | Zbl

[12] Guckenheimer J., “Numerical analysis of dynamical systems”, Handbook of Dynamical Systems, 2, Amsterdam, 2002, 345–390 | DOI | MR | Zbl

[13] Guckenheimer J., “Phase portraits of planar vector fields: computer proofs”, Experiment. Math., 4:2 (1995), 153–165 | DOI | MR | Zbl

[14] Lotka-Volterra and related systems, eds. Sh. Ahmad, I.M. Stamova, Walter de Gruyter GmbH, Berlin; Boston, 2013, 236 pp. | MR

[15] Pchelintsev A.N., “Numerical and physical modelling the dynamics of Lorenz system”, Numerical analysis and Applications, 7:2 (2014), 159–167 | DOI | MR

[16] Peitgen H.-O., Jurgens H., Saupe D., “Rossler attractor”, Chaos and fractals: New frontiers of science, Springer, New York, 2004, 636–646 | MR

[17] Reyn J.W., , Delft University of Technology, Delft, 1987 http://ta.twi.tudelft.nl/DV/Staff/Reyn/