@article{TIMM_2015_21_2_a1,
author = {A. A. Azamov and M. A. Bekimov},
title = {An approximation algorithm for quadratic dynamic systems based on {N.} {Chomsky's} grammar for {Taylor's} formula},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {21--25},
year = {2015},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a1/}
}
TY - JOUR AU - A. A. Azamov AU - M. A. Bekimov TI - An approximation algorithm for quadratic dynamic systems based on N. Chomsky's grammar for Taylor's formula JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 21 EP - 25 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a1/ LA - ru ID - TIMM_2015_21_2_a1 ER -
%0 Journal Article %A A. A. Azamov %A M. A. Bekimov %T An approximation algorithm for quadratic dynamic systems based on N. Chomsky's grammar for Taylor's formula %J Trudy Instituta matematiki i mehaniki %D 2015 %P 21-25 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a1/ %G ru %F TIMM_2015_21_2_a1
A. A. Azamov; M. A. Bekimov. An approximation algorithm for quadratic dynamic systems based on N. Chomsky's grammar for Taylor's formula. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 21-25. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a1/
[1] Anosov D.V., “Lorentsa attraktor”, Matematicheskaya entsiklopediya, 3, Nauka, M., 1982
[2] Bakhvalov N.S., Chislennye metody, Nauka, M., 1973, 632 pp. | MR
[3] Gladkii A.V., Formalnye grammatiki i yazyki, Nauka, M., 1973, 368 pp. | MR
[4] Zorich V.A., Matematicheskii analiz, no. 2, Nauka, M., 1984, 640 pp. | MR
[5] Ilyashenko Yu.S., Izbrannye zadachi teorii dinamicheskikh sistem, Izd-vo MTsNMO, M., 2011, 124 pp.
[6] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971, 392 pp. | MR
[7] Artes J.C., Llibre J., “Quadratic Hamiltonian vector fields”, J. Diff. Equations, 107 (1994), 80–95 | DOI | MR | Zbl
[8] Butcher J.C., Numerical methods for ordinary differential equations, 2nd ed., John Wiley Sons Ltd., New York, 2008, 482 pp. | MR | Zbl
[9] Chomsky N., “Three models for the description of language”, IRE Transactions on Information Theory, 2 (1956), 113–124 | DOI
[10] Coppel W.A., “A survey of quadratic systems”, J. Diff. Equations, 2 (1966), 293–304 | DOI | MR | Zbl
[11] Guckenheimer J., “Computational environments for exploring dynamical systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg, 1:2 (1991), 269–276 | DOI | MR | Zbl
[12] Guckenheimer J., “Numerical analysis of dynamical systems”, Handbook of Dynamical Systems, 2, Amsterdam, 2002, 345–390 | DOI | MR | Zbl
[13] Guckenheimer J., “Phase portraits of planar vector fields: computer proofs”, Experiment. Math., 4:2 (1995), 153–165 | DOI | MR | Zbl
[14] Lotka-Volterra and related systems, eds. Sh. Ahmad, I.M. Stamova, Walter de Gruyter GmbH, Berlin; Boston, 2013, 236 pp. | MR
[15] Pchelintsev A.N., “Numerical and physical modelling the dynamics of Lorenz system”, Numerical analysis and Applications, 7:2 (2014), 159–167 | DOI | MR
[16] Peitgen H.-O., Jurgens H., Saupe D., “Rossler attractor”, Chaos and fractals: New frontiers of science, Springer, New York, 2004, 636–646 | MR
[17] Reyn J.W., , Delft University of Technology, Delft, 1987 http://ta.twi.tudelft.nl/DV/Staff/Reyn/