Singular asymptotics in the Cauchy problem for a parabolic equation with a small parameter
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 97-104
Voir la notice de l'article provenant de la source Math-Net.Ru
Results of investigation of the asymptotic behavior of solutions to the Cauchy problem for a quasi-linear parabolic equation with a small parameter at a higher derivative in neighborhoods of singular points of solutions of the limit problem are presented. Interest to the problem under consideration is explained by its applications in investigations of the evolution of a wide class of physical systems and probabilistic processes such as acoustic waves in fluid and gas, hydrodynamical turbulence and nonlinear diffusion.
Keywords:
parabolic equation; singular asymptotics; singular points; shock waves; gradient catastrophe; Whitney fold function; renormalization.
@article{TIMM_2015_21_1_a8,
author = {S. V. Zakharov},
title = {Singular asymptotics in the {Cauchy} problem for a parabolic equation with a small parameter},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {97--104},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a8/}
}
TY - JOUR AU - S. V. Zakharov TI - Singular asymptotics in the Cauchy problem for a parabolic equation with a small parameter JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 97 EP - 104 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a8/ LA - ru ID - TIMM_2015_21_1_a8 ER -
S. V. Zakharov. Singular asymptotics in the Cauchy problem for a parabolic equation with a small parameter. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 97-104. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a8/