Singular asymptotics in the Cauchy problem for a parabolic equation with a small parameter
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 97-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Results of investigation of the asymptotic behavior of solutions to the Cauchy problem for a quasi-linear parabolic equation with a small parameter at a higher derivative in neighborhoods of singular points of solutions of the limit problem are presented. Interest to the problem under consideration is explained by its applications in investigations of the evolution of a wide class of physical systems and probabilistic processes such as acoustic waves in fluid and gas, hydrodynamical turbulence and nonlinear diffusion.
Keywords: parabolic equation; singular asymptotics; singular points; shock waves; gradient catastrophe; Whitney fold function; renormalization.
@article{TIMM_2015_21_1_a8,
     author = {S. V. Zakharov},
     title = {Singular asymptotics in the {Cauchy} problem for a parabolic equation with a small parameter},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {97--104},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a8/}
}
TY  - JOUR
AU  - S. V. Zakharov
TI  - Singular asymptotics in the Cauchy problem for a parabolic equation with a small parameter
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 97
EP  - 104
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a8/
LA  - ru
ID  - TIMM_2015_21_1_a8
ER  - 
%0 Journal Article
%A S. V. Zakharov
%T Singular asymptotics in the Cauchy problem for a parabolic equation with a small parameter
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 97-104
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a8/
%G ru
%F TIMM_2015_21_1_a8
S. V. Zakharov. Singular asymptotics in the Cauchy problem for a parabolic equation with a small parameter. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 97-104. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a8/

[1] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977, 624 pp. | MR

[2] Gurbatov S.N., Malakhov A.N., Saichev A.I., Nelineinye sluchainye volny v sredakh bez dispersii, Nauka, M., 1990, 216 pp. | MR

[3] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[4] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[5] Ilin A.M., Nesterova T.N., “Asimptotika resheniya zadachi Koshi dlya odnogo kvazilineinogo uravneniya s malym parametrom”, Dokl. AN SSSR, 240:1 (1978), 11–13 | MR | Zbl

[6] Nesterova T.N., “Ob asimptotike resheniya uravneniya Byurgersa v okrestnosti sliyaniya dvukh linii razryva”, Differentsialnye uravneniya s malym parametrom, Izd-vo UNTs AN SSSR, Sverdlovsk, 1980, 66–86 | MR

[7] Ilin A.M., “Zadacha Koshi dlya odnogo kvazilineinogo parabolicheskogo uravneniya s malym parametrom”, Dokl. AN SSSR, 283:3 (1985), 530–534 | MR | Zbl

[8] Sushko V.G., “Ob asimptoticheskikh razlozheniyakh reshenii odnogo parabolicheskogo uravneniya s malym parametrom”, Differents. uravneniya, 21:10 (1985), 1794–1798 | MR | Zbl

[9] Zakharov S.V., Ilin A.M., “Ot slabogo razryva k gradientnoi katastrofe”, Mat. sb., 192:10 (2001), 3–18 | DOI | MR | Zbl

[10] Zakharov S.V., “Asimptoticheskoe reshenie odnoi zadachi Koshi v okrestnosti gradientnoi katastrofy”, Mat. sb., 197:6 (2006), 47–62 | DOI | Zbl

[11] Zakharov S.V., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s dvumya malymi parametrami”, Dokl. Akad. Nauk, 422:6 (2008), 733–734 | Zbl

[12] Zakharov S.V., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s bolshim nachalnym gradientom i maloi vyazkostyu”, Zhurn. vychisl. matematiki i mat. fiziki, 50:4 (2010), 699–706 | MR | Zbl