Asymptotics of a solution of the second boundary value problem for the Laplace equation outside a small neighborhood of a segment
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 81-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and validate an asymptotic expansion of a solution of the exterior Neumann problem for the Laplace equation outside a small neighborhood of a segment. The width of the neighborhood is characterized by a small parameter. A physical interpretation of the solution is the two-dimensional velocity potential of an ideal fluid in the case of a laminar flow across a thin body.
Keywords: boundary value problem; Laplace equation; asymptotic expansion; matching method; laminar stream; ideal fluid.
@article{TIMM_2015_21_1_a7,
     author = {A. A. Ershov},
     title = {Asymptotics of a solution of the second boundary value problem for the {Laplace} equation outside a small neighborhood of a segment},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {81--96},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a7/}
}
TY  - JOUR
AU  - A. A. Ershov
TI  - Asymptotics of a solution of the second boundary value problem for the Laplace equation outside a small neighborhood of a segment
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 81
EP  - 96
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a7/
LA  - ru
ID  - TIMM_2015_21_1_a7
ER  - 
%0 Journal Article
%A A. A. Ershov
%T Asymptotics of a solution of the second boundary value problem for the Laplace equation outside a small neighborhood of a segment
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 81-96
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a7/
%G ru
%F TIMM_2015_21_1_a7
A. A. Ershov. Asymptotics of a solution of the second boundary value problem for the Laplace equation outside a small neighborhood of a segment. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a7/