Asymptotics of a solution of the second boundary value problem for the Laplace equation outside a small neighborhood of a segment
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 81-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct and validate an asymptotic expansion of a solution of the exterior Neumann problem for the Laplace equation outside a small neighborhood of a segment. The width of the neighborhood is characterized by a small parameter. A physical interpretation of the solution is the two-dimensional velocity potential of an ideal fluid in the case of a laminar flow across a thin body.
Keywords: boundary value problem; Laplace equation; asymptotic expansion; matching method; laminar stream; ideal fluid.
@article{TIMM_2015_21_1_a7,
     author = {A. A. Ershov},
     title = {Asymptotics of a solution of the second boundary value problem for the {Laplace} equation outside a small neighborhood of a segment},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {81--96},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a7/}
}
TY  - JOUR
AU  - A. A. Ershov
TI  - Asymptotics of a solution of the second boundary value problem for the Laplace equation outside a small neighborhood of a segment
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 81
EP  - 96
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a7/
LA  - ru
ID  - TIMM_2015_21_1_a7
ER  - 
%0 Journal Article
%A A. A. Ershov
%T Asymptotics of a solution of the second boundary value problem for the Laplace equation outside a small neighborhood of a segment
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 81-96
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a7/
%G ru
%F TIMM_2015_21_1_a7
A. A. Ershov. Asymptotics of a solution of the second boundary value problem for the Laplace equation outside a small neighborhood of a segment. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a7/

[1] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 334 pp. | MR

[2] Ilin A.M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. 1. Dvumernyi sluchai”, Mat. sb., 99(141):4 (1976), 514–537 | MR | Zbl

[3] Gadylshin R.R., “Asimptotika sobstvennykh znachenii zadachi Dirikhle v oblasti s uzkoi schelyu”, Mat. sb., 189:4 (1998), 25–48 | DOI | MR | Zbl

[4] Ershov A.A., “Zadacha ob obtekanii tonkogo diska”, Matematika. Mekhanika. Informatika, v. 14, Vest. ChelGU, 27(242), 2011, 61–78 | MR

[5] Ershov A.A., “Asimptoticheskoe razlozhenie resheniya uravneniya Laplasa vne tonkogo diska”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 92–107

[6] Fedoryuk M.V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Tr. seminara S.L. Soboleva (Novosibirsk, 1980), no. 1, 1980, 113–131 | MR | Zbl

[7] Fedoryuk M.V., “Asimptotika resheniya zadachi Dirikhle dlya operatora Laplasa i Gelmgoltsa vo vneshnosti tonkogo tsilindra”, Izv. AN SSSR. Ser. matematicheskaya, 45:1 (1981), 167–186 | MR | Zbl

[8] Ilin A.M., “Asimptotika resheniya kraevoi zadachi dlya uravneniya Puassona vne tsilindra i polutsilindra”, Mat. sb., 118(160):4(6) (1982), 184–202 | Zbl

[9] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp. | MR

[10] Ilin A.M., Uravneniya matematicheskoi fiziki, Nauka, M., 2005, 192 pp.

[11] Oleinik O.A., “Ob ustoichivosti zadachi Neimana”, Uspekhi mat. nauk, 11:1 (67) (1956), 223–225 | MR