Strongly uniform extensions of dual 2-designs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 35-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A strongly $\alpha$-uniform partial space of lines of order $(s,t)$ is called an $\alpha$-partial geometry. If $\alpha=t+1$, then the geometry is called a dual 2-design. Locally triangular and locally Grassman graphs correspond to triangular extensions of certain dual 2-designs, and the class of strongly uniform quasi-biplanes coincides with the class of strongly uniform extensions of dual 2-designs. We study strongly uniform extensions of dual 2-designs.
Keywords: partial geometry; uniform extensions; 2-designs.
@article{TIMM_2015_21_1_a3,
     author = {I. N. Belousov and A. A. Makhnev},
     title = {Strongly uniform extensions of dual 2-designs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {35--45},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a3/}
}
TY  - JOUR
AU  - I. N. Belousov
AU  - A. A. Makhnev
TI  - Strongly uniform extensions of dual 2-designs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 35
EP  - 45
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a3/
LA  - ru
ID  - TIMM_2015_21_1_a3
ER  - 
%0 Journal Article
%A I. N. Belousov
%A A. A. Makhnev
%T Strongly uniform extensions of dual 2-designs
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 35-45
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a3/
%G ru
%F TIMM_2015_21_1_a3
I. N. Belousov; A. A. Makhnev. Strongly uniform extensions of dual 2-designs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 35-45. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a3/

[1] Hughes D.R., “Extended partial geometries: dual 2-design”, Europ. J. Combin, 11:5 (1990), 459–472 | DOI | MR

[2] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl

[3] Makhnev A.A., “O grafakh s $\mu$-podgrafami, izomorfnymi $K_{u\times 2}$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7:2 (2001), 169–178, Ekaterinburg | MR | Zbl

[4] Huang T., “On quasi-semisymmetric designs”, Finite Geometry and Combin. (Third Intern. Conf. at Deinze. Belgium), 1997, 1–3

[5] Makhnev A.A., “O silno regulyarnykh grafakh s $k=2\mu$ i ikh rasshireniyakh”, Sib. mat. zhurnal, 43:3 (2002), 609–619 | MR

[6] Hobart S.A., Hughes D.R., “EpGs with minimal $\mu$, II”, Geom. Dedicata, 42:2 (1992), 129–138 | DOI | MR | Zbl

[7] Makhnev A.A., “Chastichnye geometrii i ikh rasshireniya”, Uspekhi mat. nauk, 54:5(329) (1999), 25–76 | DOI | MR | Zbl

[8] Makhnev A.A., Paduchikh D.V., “Kharakterizatsiya grafov znakoperemennykh i kvadratichnykh form kak nakrytii lokalno grassmanovykh grafov”, Dokl. AN, 425:1 (2009), 20–24 | MR | Zbl