Optimal shapes of cracks in a viscoelastic body
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 294-304
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider an optimal control problem for equations describing the quasistatic deformation of a linear viscoelastic body. There is a crack in the body, and displacements of opposite faces of the crack are constrained by the nonpenetration condition. The continuous dependence of the solution to the equilibrium problem on the shape of the crack is established. In particular, we prove the existence of a shape for which the crack opening is minimal
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
viscoelasticity; crack; nonpenetration condition; optimal control; fictitious domain method.
                    
                  
                
                
                @article{TIMM_2015_21_1_a28,
     author = {V. V. Shcherbakov and O. I. Krivorot'ko},
     title = {Optimal shapes of cracks in a viscoelastic body},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {294--304},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a28/}
}
                      
                      
                    TY - JOUR AU - V. V. Shcherbakov AU - O. I. Krivorot'ko TI - Optimal shapes of cracks in a viscoelastic body JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 294 EP - 304 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a28/ LA - ru ID - TIMM_2015_21_1_a28 ER -
V. V. Shcherbakov; O. I. Krivorot'ko. Optimal shapes of cracks in a viscoelastic body. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 294-304. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a28/
