Optimal shapes of cracks in a viscoelastic body
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 294-304

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimal control problem for equations describing the quasistatic deformation of a linear viscoelastic body. There is a crack in the body, and displacements of opposite faces of the crack are constrained by the nonpenetration condition. The continuous dependence of the solution to the equilibrium problem on the shape of the crack is established. In particular, we prove the existence of a shape for which the crack opening is minimal
Keywords: viscoelasticity; crack; nonpenetration condition; optimal control; fictitious domain method.
@article{TIMM_2015_21_1_a28,
     author = {V. V. Shcherbakov and O. I. Krivorot'ko},
     title = {Optimal shapes of cracks in a viscoelastic body},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {294--304},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a28/}
}
TY  - JOUR
AU  - V. V. Shcherbakov
AU  - O. I. Krivorot'ko
TI  - Optimal shapes of cracks in a viscoelastic body
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 294
EP  - 304
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a28/
LA  - ru
ID  - TIMM_2015_21_1_a28
ER  - 
%0 Journal Article
%A V. V. Shcherbakov
%A O. I. Krivorot'ko
%T Optimal shapes of cracks in a viscoelastic body
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 294-304
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a28/
%G ru
%F TIMM_2015_21_1_a28
V. V. Shcherbakov; O. I. Krivorot'ko. Optimal shapes of cracks in a viscoelastic body. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 294-304. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a28/