@article{TIMM_2015_21_1_a25,
author = {A. A. Uspenskii},
title = {Necessary conditions for the existence of pseudovertices of the boundary set in the {Dirichlet} problem for the eikonal equation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {250--263},
year = {2015},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a25/}
}
TY - JOUR AU - A. A. Uspenskii TI - Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 250 EP - 263 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a25/ LA - ru ID - TIMM_2015_21_1_a25 ER -
%0 Journal Article %A A. A. Uspenskii %T Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation %J Trudy Instituta matematiki i mehaniki %D 2015 %P 250-263 %V 21 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a25/ %G ru %F TIMM_2015_21_1_a25
A. A. Uspenskii. Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 250-263. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a25/
[1] Kruzhkov S.N., “Obobschennye resheniya uravnenii Gamiltona – Yakobi tipa eikonala. I”, Mat. sb., 98:3 (1974), 450–493
[2] Subbotin A.I., “Obobschenie osnovnogo uravneniya teorii differentsialnykh igr”, Dokl. AN SSSR, 254:2 (1980), 293–297 | MR | Zbl
[3] Crandall M.G., Lions P.L., Viscosity solutions of Hamilton-Jacobi equations, 277:1 (1983), 1–42 | MR | Zbl
[4] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh tekhnologii, M.; Izhevsk, 2003, 336 pp.
[5] Kolokoltsov V.N., Maslov V.P., “Zadacha Koshi dlya odnorodnogo uravneniya Bellmana”, Dokl. AN SSSR, 296:4 (1987), 796–800 | MR
[6] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[7] Uspenskii A.A., Ushakov V.N., Fomin A.N., $\alpha$-mnozhestva i ikh svoistva, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2004, 62 pp.
[8] Uspenskii A.A., Analiticheskie metody vychisleniya mery nevypuklosti ploskikh mnozhestv, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2007, 21 pp.
[9] Uspenskii A.A., Lebedev P.D., “Issledovanie geometrii i asimptotiki volnovykh frontov v nekotorykh zadachakh upravleniya”, Tr. 9-i Mezhdunar. Chetaevskoi konf., v. 5, 2007, 224–236
[10] Uspenskii A.A., Lebedev P.D., “Geometriya i asimptotika volnovykh frontov”, Izv. vuzov, 2008, no. 3, 27–37 | MR | Zbl
[11] Ushakov V.N., Uspenskii A.A., Lebedev P.D., “Postroenie minimaksnogo resheniya uravneniya tipa eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:2 (2008), 182–191 | MR | Zbl
[12] Uspenskii A.A., Lebedev P.D., “Usloviya transversalnosti vetvei resheniya nelineinogo uravneniya v zadache bystrodeistviya s krugovoi indikatrisoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:4 (2008), 82–100 | MR
[13] Uspenskii A.A., Lebedev P.D., “Postroenie funktsii optimalnogo rezultata v zadache bystrodeistviya na osnove mnozhestva simmetrii”, Avtomatika i telemekhanika, 2009, no. 7, 50–57 | MR | Zbl
[14] Uspenskii A.A., Lebedev P.D., “O mnozhestve predelnykh znachenii lokalnykh diffeomorfizmov pri evolyutsii volnovykh frontov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 171–186 | MR
[15] Ushakov V.N., Uspenskii A.A., Lebedev P.D., “Geometriya singulyarnykh krivykh dlya odnogo klassa zadach bystrodeistviya”, Vestn. S.-Peterb. un-ta Ser. 10, 2013, no. 3, 157–167
[16] Uspenskii A.A., “Formuly ischisleniya negladkikh osobennostei funktsii optimalnogo rezultata v zadache bystrodeistviya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 276–290
[17] Slyusarev G.G., Geometricheskaya optika, Izd-vo AN SSSR, M.-L., 1946, 332 pp. | MR
[18] Byushgens S.S., Differentsialnaya geometriya, GITTL, M., 1940, 300 pp.
[19] Arnold V.I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996, 334 pp. | MR
[20] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR
[21] Zakalyukin V.M., “Ogibayuschie semeistv volnovykh frontov i teoriya upravleniya”, Tr. MIAN, 209 (1995), 133–142 | MR | Zbl
[22] Blyashke V., Krug i shar, Nauka, M., 1967, 232 pp. | MR
[23] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR
[24] Subbotina N.N., Kolpakova E.A., “O strukture lokalno lipshitsevykh minimaksnykh reshenii uravneniya Gamiltona - Yakobi - Bellmana v terminakh klassicheskikh kharakteristik”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 202–218
[25] Ohm Martin, Lehrbuch der gesamten hohern Mathematik, Bd 2, Friedrich Volckmar, Leipzig, 1835