An approach to solving an ill-posed problem for a nonlinear differential equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 231-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A reverse time problem is considered for a semilinear differential equation. We suggest an approach to construct approximate solving methods for the problem under study. The approach generalizes the scheme proposed by A. B. Bakushinskii for linear ill-posed problems. Two-sided error estimates for the proposed methods are obtained via the error estimates for the corresponding linear problem on standard correctness classes. Order optimality is proved for the considered algorithms.
Keywords: differential equation; inverse problem; modulus of continuity of the inverse operator; approximate method; error estimate.
@article{TIMM_2015_21_1_a23,
     author = {E. V. Tabarintseva},
     title = {An approach to solving an ill-posed problem for a nonlinear differential equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {231--237},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a23/}
}
TY  - JOUR
AU  - E. V. Tabarintseva
TI  - An approach to solving an ill-posed problem for a nonlinear differential equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 231
EP  - 237
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a23/
LA  - ru
ID  - TIMM_2015_21_1_a23
ER  - 
%0 Journal Article
%A E. V. Tabarintseva
%T An approach to solving an ill-posed problem for a nonlinear differential equation
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 231-237
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a23/
%G ru
%F TIMM_2015_21_1_a23
E. V. Tabarintseva. An approach to solving an ill-posed problem for a nonlinear differential equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 231-237. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a23/

[1] Ivanov V.K., Melnikova I.V., Filinkov A.I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, M., 1995, 176 pp. | MR

[2] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektno postavlennykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp.

[3] Ivanov V.K., Korolyuk T.I., “Ob otsenke pogreshnosti pri reshenii lineinykh nekorrektnykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 9:1 (1969), 30–41 | MR | Zbl

[4] Strakhov V.N., “O reshenii lineinykh nekorrektnykh zadach v gilbertovom prostranstve”, Differents. uravneniya, 6:8 (1970), 1490–1495 | Zbl

[5] Tanana V.P., “O skhodimosti regulyarizovannykh reshenii nelineinykh operatornykh uravnenii”, Sib. zhurn. industr. matematiki, 6:3 (2003), 119–133 | MR | Zbl

[6] Tanana V.P., “Optimalnye po poryadku metody resheniya nelineinykh nekorrektno postavlennykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 39:5 (1976), 503–507

[7] Bakushinskii A.B., “Odin obschii priem postroeniya regulyarizuyuschikh algoritmov dlya lineinogo nekorrektno postavlennogo uravneniya v gilbertovom prostranstve”, Zhurn. vychisl. matematiki i mat. fiziki, 7:8 (1967), 672–677

[8] Vasin V.V., Ageev A.L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993, 264 pp. | MR

[9] Tikhonov A.N., Leonov A.S., Yagola A.G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995, 312 pp. | MR

[10] Kokurin M.Yu., Operatornaya regulyarizatsiya i issledovanie nelineinykh monotonnykh zadach, Izd. Mariiskogo gos. un-ta, Ioshkar-Ola, 1998, 292 pp.

[11] Tabarintseva E.V., “Ob otsenke modulya nepreryvnosti odnoi nelineinoi obratnoi zadachi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9:1 (2013), 253–257

[12] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985, 376 pp. | MR

[13] Tabarintseva E.V., “Ob otsenke pogreshnosti metoda kvaziobrascheniya pri reshenii zadachi Koshi dlya polulineinogo differentsialnogo uravneniya”, Sib. zhurn. vychisl. matematiki, 8:3 (2005), 259–271 | Zbl

[14] Tanana V.P., Tabarintseva E.V., “O metode priblizheniya kusochno-nepreryvnykh reshenii nelineinykh obratnykh zadach”, Sib. zhurn. vychisl. matematiki, 10:2 (2007), 221–228 | Zbl