Stability of capture into parametric autoresonance
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 220-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A mathematical model describing the initial stage of a capture into parametric autoresonance in nonlinear oscillating systems is considered. The resonance corresponds to solutions with unboundedly growing energy. The stability of such solutions with respect to persistent perturbations on an asymptotically large time interval is investigated. A class of admissible perturbations is described for which a capture into parametric autoresonance occurs.
Keywords: parametric resonance; nonlinear oscillations; perturbations; stability.
@article{TIMM_2015_21_1_a22,
     author = {O. A. Sultanov},
     title = {Stability of capture into parametric autoresonance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {220--230},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a22/}
}
TY  - JOUR
AU  - O. A. Sultanov
TI  - Stability of capture into parametric autoresonance
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 220
EP  - 230
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a22/
LA  - ru
ID  - TIMM_2015_21_1_a22
ER  - 
%0 Journal Article
%A O. A. Sultanov
%T Stability of capture into parametric autoresonance
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 220-230
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a22/
%G ru
%F TIMM_2015_21_1_a22
O. A. Sultanov. Stability of capture into parametric autoresonance. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 220-230. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a22/

[1] Veksler V.I., “Novyi metod uskoreniya relyativistskikh chastits”, Dokl. AN SSSR, 43:8 (1944), 346–348

[2] McMillan E.M., “The synchrotron-a proposed high energy particle accelerator”, Phys. Rev., 68 (1945), 143–144 | DOI

[3] Fajans J., Friedland L., “Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators”, Am. J. Phys., 69:10 (2001), 1096–1102 | DOI

[4] Kalyakin L.A., “Asymptotic analysis of autoresonance models”, Russian Math. Surveys, 63:5 (2008), 791–857 | DOI | MR | Zbl

[5] Kolomenskii A.A., Lebedev A.N., Teoriya tsiklicheskikh uskoritelei, Fizmatgiz, M., 1962, 352 pp.

[6] Gorelik G.S., Kolebaniya i volny. Vvedenie v akustiku, radiofiziku i optiku, Fizmatlit, M., 2007, 565 pp.

[7] Bogolyubov N.N., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 501 pp. | MR

[8] Khain E., Meerson B., “Parametric autoresonance”, Phys. Rev. E, 64:3 (2001), 036619 | DOI

[9] Kiselev O.M., Glebov S.G., “The capture into parametric autoresonance”, Nonlinear Dynam., 48:1-2 (2007), 217–230 | DOI | MR | Zbl

[10] “Autoresonance parametric excitation of localized oscillations of magnetization in a ferromagnet by an AC field of a variable frequency / L.A. Kalyakin, M.A. Shamsutdinov, R.N. Garifullin, R.K. Salimov”, The Physics of Metals and Metallography, 104:2 (2007), 107–120 | DOI

[11] Assaf M., Meerson B., “Parametric autoresonance of Faraday waves”, Phys. Rev. E, 72:1 (2005), 016310 | DOI | MR

[12] Glebov S., Kiselev O., Tarkhanov N., “Weakly nonlinear dispersive waves under parametric resonance perturbation”, Studies in Appl. Math., 124 (2009), 19–37 | DOI | MR

[13] Kalyakin L.A., Sultanov O.A., “Stability of autoresonance models”, Differ. Equ., 49:3 (2013), 267–281 | DOI | MR | Zbl

[14] Sultanov O.A., “Ustoichivost modelei avtorezonansa otnositelno vozmuschenii, ogranichennykh v srednem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 274–283

[15] Sultanov O.A., “Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations”, Comput. Math. Math. Phys., 54:1 (2014), 59–73 | DOI | MR | Zbl

[16] Kuznetsov A.N., “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funkts. analiz i ego prilozheniya, 23:4 (1989), 63–74 | MR | Zbl

[17] Nemytskii V.V., Stepanov V.V., Kachestvennaya teoriya differentsialnykh uravnenii, Editorial, M., 2004, 552 pp.

[18] Kalyakin L.A., “Justification of asymptotic expansions for the principal resonance equations”, Proc. Steklov Inst. Math., 2003, Suppl. 1, S108–S122 | MR | Zbl

[19] Garifullin R.N., Kalyakin L.A., Shamsutdinov M.A., “Autoresonance excitation of a breather in weak ferromagnetics”, Comput. Math. Math. Phys., 47:7 (2007), 1158–1170 | DOI | MR

[20] Khapaev M.M., Asimptoticheskie metody i ustoichivost v teorii nelineinykh kolebanii, Vysshaya shk., M., 1988, 184 pp. | MR

[21] Rumyantsev V.V., Oziraner A.S., Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987, 256 pp. | MR

[22] Sultanov O.A., “Funktsii Lyapunova dlya neavtonomnykh sistem blizkikh k gamiltonovym”, Ufim. mat. zhurn., 2:4 (2010), 88–98 | Zbl

[23] Malkin I.G., Teoriya ustoichivosti dvizheniya, GITTL, M.; L., 1952, 432 pp. | MR