@article{TIMM_2015_21_1_a21,
author = {E. V. Strelkova and V. T. Shevaldin},
title = {On {Lebesgue} constants of local parabolic splines},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {213--219},
year = {2015},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a21/}
}
E. V. Strelkova; V. T. Shevaldin. On Lebesgue constants of local parabolic splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 213-219. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a21/
[1] Schurer F., Cheney E.W., “On interpolation cubic splines with equally-spaced nodes”, Proc. Nederlande Acad. van Wetenschappen, 71:5 (1968), 517–524 | MR | Zbl
[2] Richards F., “The Lebesque constants for cardinal spline interpolation”, J. Approx. Theory, 14:2 (1975), 83–92 | DOI | MR | Zbl
[3] Zhensykbaev A.A., “Tochnye otsenki ravnomernogo priblizheniya nepreryvnykh funktsii splainami $r$-go poryadka”, Mat. zametki, 13:2 (1973), 217–228
[4] Tzimbalario J., “Lebesque constants for cardinal $\cal L$-spline interpolation”, Can. J. Math., 29:2 (1977), 441–448 | DOI | MR | Zbl
[5] Morsche H.G. ter, “On the Lebesque constants for cardinal $\cal L$-spline interpolation”, J. Approx. Theory, 45:3 (1985), 232–246 | DOI | MR | Zbl
[6] Subbotin Yu.N., Telyakovskii S.A., “Asimptotika konstant Lebega periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Mat. sb., 191:8 (2000), 131–140 | DOI | MR | Zbl
[7] Subbotin Yu.N., Telyakovskii S.A., “Normy v $L$ periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Mat. zametki, 74:1 (2003), 108–117 | DOI | MR | Zbl
[8] Kim V.A., “Tochnye konstanty Lebega dlya interpolyatsionnykh $\cal L$-splainov tretego poryadka”, Mat. zametki, 84:1 (2008), 59–68 | DOI | MR | Zbl
[9] Kim V.A., “Tochnye konstanty Lebega dlya interpolyatsionnykh $\cal L$-splainov formalno samosopryazhennogo differentsialnogo operatora”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 169–177
[10] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR
[11] Lyche T., Schumaker L.L., “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl
[12] Strelkova E.V., Shevaldin V.T., “Lokalnye eksponentsialnye splainy s proizvolnymi uzlami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 258–263
[13] Korneichuk N.P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR
[14] Subbotin Yu.N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 33:7 (1993), 996–1003 | MR | Zbl
[15] Shevaldin V.T., “Approksimatsiya lokalnymi parabolicheskimi splainami s proizvolnym raspolozheniem uzlov”, Sib. zhurn. vychisl. matematiki, 8:1 (2005), 77–88 | MR | Zbl
[16] Strelkova E.V., Shevaldin V.T., “Formosokhranenie pri approksimatsii lokalnymi eksponentsialnymi splainami proizvolnogo poryadka”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 291–299 | MR
[17] Korneichuk N.P., “O priblizhenii lokalnymi splainami minimalnogo defekta”, Ukr. mat. zhurnal, 34:5 (1982), 617–621 | MR