On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 191-196
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an interpolation problem with minimum value of the uniform norm of the Laplace operator of interpolants for a class of bounded interpolated sequences. The data are interpolated at nodes of the grid formed by points from $\mathbb{R}^2$ with integer coordinates. Two-sided estimates for the uniform norm of the best interpolant are found, which improve known estimates.
Keywords:
interpolation; Laplace operator; $ZP$-element.
@article{TIMM_2015_21_1_a18,
author = {S. I. Novikov},
title = {On estimates for the uniform norm of the {Laplace} operator of the best interpolants on a class of bounded interpolation data},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {191--196},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/}
}
TY - JOUR AU - S. I. Novikov TI - On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 191 EP - 196 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/ LA - ru ID - TIMM_2015_21_1_a18 ER -
%0 Journal Article %A S. I. Novikov %T On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data %J Trudy Instituta matematiki i mehaniki %D 2015 %P 191-196 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/ %G ru %F TIMM_2015_21_1_a18
S. I. Novikov. On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 191-196. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/