@article{TIMM_2015_21_1_a18,
author = {S. I. Novikov},
title = {On estimates for the uniform norm of the {Laplace} operator of the best interpolants on a class of bounded interpolation data},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {191--196},
year = {2015},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/}
}
TY - JOUR AU - S. I. Novikov TI - On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 191 EP - 196 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/ LA - ru ID - TIMM_2015_21_1_a18 ER -
%0 Journal Article %A S. I. Novikov %T On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data %J Trudy Instituta matematiki i mehaniki %D 2015 %P 191-196 %V 21 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/ %G ru %F TIMM_2015_21_1_a18
S. I. Novikov. On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 191-196. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/
[1] Favard J., “Sur l'interpolation”, J. Math. Pures Appl., 19:9 (1940), 281–306 | MR
[2] Fisher S., Jerome J., “Minimum norm extremals in function spaces”, Lecture Notes in Math., 479 (1975), 1–209 | DOI | MR
[3] Tikhomirov V.M., Boyanov B.D., “O nekotorykh vypuklykh zadachakh teorii priblizhenii”, Serdica, 5:1 (1979), 83–96 | MR | Zbl
[4] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN, 78 (1965), 24–42 | MR | Zbl
[5] Subbotin Yu.N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-i proizvodnoi”, Tr. MIAN, 88 (1967), 30–60 | MR | Zbl
[6] Shevaldin V.T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622 | MR | Zbl
[7] Novikov S.I., Shevaldin V.T., “Ob odnoi zadache ekstremalnoi interpolyatsii dlya funktsii mnogikh peremennykh”, Trudy In-ta matematiki i mekhaniki UrO RAN, 7:1 (2001), 144–159
[8] Novikov S.I., “Zadachi ekstremalnoi funktsionalnoi interpolyatsii”, Tr. Mezhdunar. letnei mat. shk. S.B.Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 100–109
[9] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR
[10] Nicolau A., Ortega-Gerda J., Seip K., “The constant of interpolation”, Pacific J. Math., 213:2 (2004), 389–398 | DOI | MR | Zbl
[11] Novikov S.I., “Interpolation in $\mathbb{R}^2$ with minimum value of the uniform norm of the Laplace operator”, J. Math. and System Science, 3:2 (2013), 55–61
[12] Zwart P.B., “Multivariate splines with non-degenerate partitions”, SIAM J. Numer. Analysis, 10:2 (1973), 665–673 | DOI | MR | Zbl
[13] Powell M., “Piecewise quadratic surface fitting for contour plotting”, Software for Numerical Mathematics, ed. D.J. Evans, Acad. Press, London, 1974, 253–271 | MR
[14] Boor C. de, Hollig K., Riemenschneider S., Box splines, Springer, New York etc., 1993, 200 pp. | MR | Zbl
[15] Concini C. de, Procesi C., Topics in hyperplane arrangements, polytopes and box-splines, Springer, New York etc., 2010, 384 pp. | MR
[16] Timofeev V.G., “Neravenstva tipa Kolmogorova s operatorom Laplasa”, Teoriya funktsii i approksimatsii, Izd-vo SGU, Saratov, 1983, 84–92 | MR
[17] Novikov S.I., “Interpolyatsiya s minimalnym znacheniem normy operatora Laplasa v share”, Zbirnik prats In-tu matem. NAN Ukraïni, 5:1 (2008), 248–262 | Zbl
[18] Novikov S.I., “Ob odnoi zadache interpolyatsii s naimenshim znacheniem normy operatora Laplasa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 230–243