On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 191-196

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an interpolation problem with minimum value of the uniform norm of the Laplace operator of interpolants for a class of bounded interpolated sequences. The data are interpolated at nodes of the grid formed by points from $\mathbb{R}^2$ with integer coordinates. Two-sided estimates for the uniform norm of the best interpolant are found, which improve known estimates.
Keywords: interpolation; Laplace operator; $ZP$-element.
@article{TIMM_2015_21_1_a18,
     author = {S. I. Novikov},
     title = {On estimates for the uniform norm of the {Laplace} operator of the best interpolants on a class of bounded interpolation data},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {191--196},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/}
}
TY  - JOUR
AU  - S. I. Novikov
TI  - On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 191
EP  - 196
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/
LA  - ru
ID  - TIMM_2015_21_1_a18
ER  - 
%0 Journal Article
%A S. I. Novikov
%T On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 191-196
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/
%G ru
%F TIMM_2015_21_1_a18
S. I. Novikov. On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 191-196. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a18/