Boundary-value problem for a second-order nonlinear equation with delta-like potential
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 177-190
Voir la notice de l'article provenant de la source Math-Net.Ru
A Dirichlet nonlinear problem for a second-order equation is considered on an interval. The problem is perturbed by the delta-like potential $\varepsilon^{-1}Q\left(\varepsilon^{-1}x\right)$, where the function $Q(\xi)$ is compactly supported and $0\varepsilon\ll1$. A solution of this boundary-value problem is constructed with accuracy up to $O(\varepsilon)$ with the use of the method of matched asymptotic expansions. The obtained asymptotic approximation is validated by means of the fixed-point theorem. All types of boundary conditions are considered for a linear boundary-value problem.
Keywords:
second-order equation; delta-like potential; small parameter; asymptotics.
@article{TIMM_2015_21_1_a17,
author = {F. Kh. Mukminov and T. R. Gadylshin},
title = {Boundary-value problem for a second-order nonlinear equation with delta-like potential},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {177--190},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a17/}
}
TY - JOUR AU - F. Kh. Mukminov AU - T. R. Gadylshin TI - Boundary-value problem for a second-order nonlinear equation with delta-like potential JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 177 EP - 190 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a17/ LA - ru ID - TIMM_2015_21_1_a17 ER -
%0 Journal Article %A F. Kh. Mukminov %A T. R. Gadylshin %T Boundary-value problem for a second-order nonlinear equation with delta-like potential %J Trudy Instituta matematiki i mehaniki %D 2015 %P 177-190 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a17/ %G ru %F TIMM_2015_21_1_a17
F. Kh. Mukminov; T. R. Gadylshin. Boundary-value problem for a second-order nonlinear equation with delta-like potential. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 177-190. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a17/