On the existence of complements for residuals of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 122-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

L.A. Shemetkov's theorem on the complementability of the $\mathfrak{F}$-residual of a finite group is developed in the article. For a local Fitting formation $\mathfrak{F}$, it is proved that, if a group $G$ is representable in the form $G=AB$, where $A$ and $B$ are subnormal subgroups of $G$, the subgroups $A^\mathfrak{F}$ and $B^\mathfrak{F}$ are $\pi(\mathfrak{F})$-solvable and normal in $G$, and Sylow $p$-subgroups of $A^\mathfrak{F}$ and $B^\mathfrak{F}$ are abelian for every $p \in \pi(\mathfrak{F})$, then every $\mathfrak{F}$-normalizer of $G$ is the complement for an $\mathfrak{F}$-residual of $G$.
Keywords: finite group; subnormal subgroup; formation; residual; complement; local Fitting formation.
@article{TIMM_2015_21_1_a11,
     author = {S. F. Kamornikov and O. L. Shemetkova},
     title = {On the existence of complements for residuals of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {122--127},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/}
}
TY  - JOUR
AU  - S. F. Kamornikov
AU  - O. L. Shemetkova
TI  - On the existence of complements for residuals of finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 122
EP  - 127
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/
LA  - ru
ID  - TIMM_2015_21_1_a11
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%A O. L. Shemetkova
%T On the existence of complements for residuals of finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 122-127
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/
%G ru
%F TIMM_2015_21_1_a11
S. F. Kamornikov; O. L. Shemetkova. On the existence of complements for residuals of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 122-127. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/

[1] Shemetkov L.A., “Dva napravleniya v razvitii teorii neprostykh konechnykh grupp”, Uspekhi mat. nauk, 30:2 (1975), 179–198 | MR | Zbl

[2] Shemetkov L.A., “O formatsionnykh svoistvakh konechnykh grupp”, Dokl. AN SSSR, 204:6 (1972), 1324–1327 | Zbl

[3] Shemetkov L.A., “Stupenchatye formatsii grupp”, Mat. sb., 94:4 (1974), 628–648 | Zbl

[4] Hall P., “The construction of soluble groups”, J. Reine Angew. Math, 182 (1940), 206–214 | MR

[5] Gaschuutz W., “Zur Erweiterungstheorie endlicher Gruppen”, J. Reine Angew. Math, 190 (1952), 93–107 | MR

[6] Huppert B., “Subnormale Untergruppen und $p$-Sylowgruppen”, Acta Sci. Math, 22 (1961), 46–61 | MR | Zbl

[7] Shemetkov L.A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[8] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin; New York, 1992, 891 pp. | MR

[9] Kamornikov S.F., “O nekotorykh svoistvakh formatsii kvazinilpotentnykh grupp”, Mat. zametki, 53:2 (1993), 71–77 | MR | Zbl

[10] Kamornikov S.F., Shemetkova O.L., “O podgruppakh, pokryvayuschikh tolko $\mathfrak{F}$-tsentralnye glavnye faktory v konechnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 158–163

[11] Kamornikov S.F., “O dopolneniyakh koradikala konechnoi gruppy”, Izv. Gomelskogo gos. un-ta im. F.Skoriny, 2013, no. 6, 17–23