On the existence of complements for residuals of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 122-127
Voir la notice de l'article provenant de la source Math-Net.Ru
L.A. Shemetkov's theorem on the complementability of the $\mathfrak{F}$-residual of a finite group is developed in the article. For a local Fitting formation $\mathfrak{F}$, it is proved that, if a group $G$ is representable in the form $G=AB$, where $A$ and $B$ are subnormal subgroups of $G$, the subgroups $A^\mathfrak{F}$ and $B^\mathfrak{F}$ are $\pi(\mathfrak{F})$-solvable and normal in $G$, and Sylow $p$-subgroups of $A^\mathfrak{F}$ and $B^\mathfrak{F}$ are abelian for every $p \in \pi(\mathfrak{F})$, then every $\mathfrak{F}$-normalizer of $G$ is the complement for an $\mathfrak{F}$-residual of $G$.
Keywords:
finite group; subnormal subgroup; formation; residual; complement; local Fitting formation.
@article{TIMM_2015_21_1_a11,
author = {S. F. Kamornikov and O. L. Shemetkova},
title = {On the existence of complements for residuals of finite groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {122--127},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/}
}
TY - JOUR AU - S. F. Kamornikov AU - O. L. Shemetkova TI - On the existence of complements for residuals of finite groups JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 122 EP - 127 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/ LA - ru ID - TIMM_2015_21_1_a11 ER -
S. F. Kamornikov; O. L. Shemetkova. On the existence of complements for residuals of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 122-127. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/