On the existence of complements for residuals of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 122-127

Voir la notice de l'article provenant de la source Math-Net.Ru

L.A. Shemetkov's theorem on the complementability of the $\mathfrak{F}$-residual of a finite group is developed in the article. For a local Fitting formation $\mathfrak{F}$, it is proved that, if a group $G$ is representable in the form $G=AB$, where $A$ and $B$ are subnormal subgroups of $G$, the subgroups $A^\mathfrak{F}$ and $B^\mathfrak{F}$ are $\pi(\mathfrak{F})$-solvable and normal in $G$, and Sylow $p$-subgroups of $A^\mathfrak{F}$ and $B^\mathfrak{F}$ are abelian for every $p \in \pi(\mathfrak{F})$, then every $\mathfrak{F}$-normalizer of $G$ is the complement for an $\mathfrak{F}$-residual of $G$.
Keywords: finite group; subnormal subgroup; formation; residual; complement; local Fitting formation.
@article{TIMM_2015_21_1_a11,
     author = {S. F. Kamornikov and O. L. Shemetkova},
     title = {On the existence of complements for residuals of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {122--127},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/}
}
TY  - JOUR
AU  - S. F. Kamornikov
AU  - O. L. Shemetkova
TI  - On the existence of complements for residuals of finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 122
EP  - 127
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/
LA  - ru
ID  - TIMM_2015_21_1_a11
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%A O. L. Shemetkova
%T On the existence of complements for residuals of finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 122-127
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/
%G ru
%F TIMM_2015_21_1_a11
S. F. Kamornikov; O. L. Shemetkova. On the existence of complements for residuals of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 122-127. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a11/